313-CD-001-002
EOSDIS Core System Project

EOSDIS Core System (ECS) Internal
Interface Control Document
for the Flight Operations Segment

October 1995

Hughes Information Technology Corporation
Upper Marlboro, MD

EOSDIS Core System (ECS) Internal Interface Control
Document for the Flight Operations Segment

October 1995

Prepared Under Contract NA S5-60000

CDRL Item 051
SUBMITTED BY
Ca E. Moore, Jr. /s 9/29/95
Cal Moore, FOS CCB Chairman Date

EOSDIS Core System Project

Hughes Information Technology Corporation
Upper Marlboro, Maryland

This page intentionally left blank.

313-CD-001-002

Preface

Object models presented in this document have been exported directly from CASE tools and in
some cases contain too much detail to be easily readable within hard copy page constraints. The
reader is encouraged to view these drawings on line using the Portable Document Format (PDF)
electronic copy available via the ECS Data Handling System (EDHS) at URL http:/
edhsl.gsfc.nasa.gov.

Thisdocument definesthe interface between the Flight Operations Segment (FOS) and the Science
Communications and Development Organization (SCDO). In particular it defines the SCDO
Services that FOS will use in the design and how they interface with the Flight Operations
Segment.

Thisdocument isacontract deliverable with an approval code 2. Assuch, it does not require formal
Government approval, however, the Government reserves the right to request changes within
45 days of theinitial submittal. Once approved, contractor changes to this document are handled
in accordance with Class | and Class Il change control requirements described in the EOS
Configuration Management Plan, and changesto this document shall be made by document change
notice (DCN) or by complete revision.

Any questions should be addressed to:

Data Management Office

The ECS Project Office

Hughes Information Technology Corporation
1616 McCormick Drive

Upper Marlbor, MD 20774

iii 313-CD-001-002

This page intentionally left blank.

Y% 313-CD-001-002

Abstract

Thisdocument definesthe interface between the Flight Operations Segment (FOS) and the Science
Communications and Development Organization (SCDO). In particular it defines the SCDO
Services that FOS will use in the design and how they interface with the Flight Operations
Segment.

Keywords: FOS, design, specification, analysis, IST, EOC, interface

% 313-CD-001-002

This page intentionally left blank.

vi 313-CD-001-002

Change Information Page

List of Effective Pages

Page Number Issue

Title Final

iii through xii Final

1-1and 1-2 Final

2-1 and 2-2 Final

3-1 through 3-96 Final

4-1 through 4-26 Final

5-1 through 5-20 Final

A-1 and A-2 Final

B-1 through B-8 Final

AB-1 Final

Document History
Document Number Status/Issue Publication Date CCR Number

313-CD-001-001 Preliminary January 1995 95-0007
313-CD-001-002 Final October 1995 95-0648

Vil

313-CD-001-002

This page intentionally left blank.

viii 313-CD-001-002

Contents

11
1.2
1.3
14
15

21
22
2.3

3.1

3.2

3.3

34

Preface
Abstract

1. Introduction

(ST 1R D L0 e U T]
APPIICADIE DOCUMENLS ..ottt ettt et s re e e e e nneennens
[NFOrMELi ON DOCUMEIESvveeeeeeeeieeeeeeeeeeeeeeeeeeeeseeesaesssessssssssssnsnsnsssnsnsnnssnsssnsnsnsnsnsnsnsnnnnns

3. Communications Subsystem (CSS) Services

(GRS ST @)Y= VT T R
311 CSS CONEXL ...ttt st b e sae e e s e e s ne e e n e e sneeenneenneas
312 CSSHATWAEE ..ottt e bbb sbenreas
Interprocess Communication (1PC) and Notification/Callback Services
3.2.1 Interprocess Communication/HCL OVEIVIEWcccocevereeeriienienienie e
3.2.2 Message PassiNg OVEIVIEWccuveieeiieeiie e sieesiee e sseeste e s s snee s
323 MUITICASE vttt

I 0 R O Y= V1= Y SO SROPR
G TR 2 O o] | (= APPSR
3.3.3 Directivesand GUIAEIINEScccuveieiiiiecee et
3.34 Sample Application Programmer INerfacecooovveeveeienieenenin e
TG ST © o 1= ot 1Y/ oo L= USSR
TIME SEIVICE .ttt ettt e e et e e e e e et e e e eae e e e ebseesbeeesabeeesnbeeesnbeeesaseeesnrenan
N R @ V= V1= YRS
Bih.2 CONEEXL ...ttt e e e e e e et e e e e e ar e e e e eeaareeeeesaseeeeeansseeeeenareneenns
3.4.3 Directives and GUIAEIINESccocuieiiieeciee e e
3.4.4 Sample Application Programmer INterfaceccccovvveveeveveeneeie e

IX 313-CD-001-002

345 ODJECE MOUE ... 3-65

3.4.6 DynamiC MOdel SCENAINOcooeiiiiieeiieie e 3-65
WSS N 1197011 Tor= (] o] o I PRSP 3-66
3.5.1 User Authentication DESCIPLIONcc.ccveeiieiieiiese e 3-66
3.5.2 User Authentication Context Within FOSccooeviieienieeneeseceese e 3-67
3.5.3 User AUtNentiCation APoooiiiiieeeeee e e 3-68
3.5.4 User Authentication Dynamic Modelccevieiiiievecie e 371
3.5.5 User Authentication REQUITEMENTScovriririiiiirierese e 371
AULNOMZBLION ...ttt e ae e esreenteeneesseenseeneennens 3-72
3.6.1 AULhOriZation DESCIPLIONcovueeiiiierieeie et 3-72
3.6.2 Authorization Context Within FOSccocoiiininniiese e 3-72
3.6.3 AULNONIiZatiON SCENAITOccvevveeieieieeeesieeie st e e st steeae e ee e aeeeesneeneens 3-73
3.6.4 Authorization DynamiC MOElccccoeoiiiiiiniineeee e 3-73
3.6.5 AUthOrization REQUITEMENLScceieeiieiieiieseeieseesieeee e ee e ae e e nne e 3-73
S o L] VS = Y o S 3-73
0 R © V< V= S 3-73
3.7.2 CONLEXLE ...ttt st et st e e be e e e e e ne e saneeabeeenneenneesnreenns 3-74
3.7.3 Directivesand GUIJEIINEScccoeiuiriririeninesesieeeee e 3-75
3.7.4 Sample Application Program INErfacecccooerevenineneneneeeeeeeee e 3-76
3.7.5 OBJECE MOE ...ttt 3-83
3.7.6 DynamiC MOdel SCENAIOScccccviieiiiiieiiere et 3-84
7.7 IMPIEMENTALIONoeiiiiiiieeiieeeeee et b e 3-94
4. MSS Services
IMISS SEIVICES ...ttt sttt st a et b et et e st e e beeae e s beentesaeenaeennan 4-1
411 MSS OVEIVIEW ..ottt sttt st st be et e e e naesbe st sbesbenneas 4-1
4.1.2 MSS CONEXE ..ottt st rbe e st e sbe e s b e e sae e st e e eaeeeaee 4-1
4.1.2 MSSHAEIAWAEE ..ottt b et 4-6
MaNBGEMENT SENVICE ...cuvieieie ettt et e e s e et e e s e e e b e e sseeenteesbaesbeesreeenteens 4-7
4.2.1 Management Service DESCIIPLIONccccveeeieeiieiierie e see e ee e ee e 4-7
4.2.2 Management SErviCe CONTEXTcocuiirieeierienieresie et 4-8
4.2.3 Management SEIVICE AP ...t 4-10
4.2.4 Management Service Dynamic MOdelccccovievieiceeie e 4-14
R o O 1Y Y= o N R 4-17
426 FOSEvent Dynamic MOdElcccviiiiiiiiiie e 4-17
4.2.7 Management Service REQUITEMENLScccciveieereereeiieseesieseeseeesieseesseeseesneens 4-19
PEITOIMMANCE ..o e bbbt 4-20
4.3.1 Performance DESCIIPLIONcoeieeieieieriesie sttt 4-20
4.3.2 Performance Context Within FOS ... 4-20

X 313-CD-001-002

4.3.3 Pearformance INterface DEfINITIONeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeseseseeesessessseesesesenes 4-20

4.3.4 Performance DynamiC MOl ... 4-21
4.3.5 PerformanCe MELIICScccoviiiririnieerese e 4-21
o 1= o 11T S 4-22
45 Configuration ManagemENLccccerirerereririeierie st see e e re e e 4-22
I © 141 g AT =SSR 4-23
4.6.1 Security Management SENVICEccccieieieeieeee et 4-23
4.6.2 Accountability Management SEIVICEc.coererereerieresesie e 4-24
4.6.3 Trouble TICKEtiNG SEIVICEcoiiiiiiieeeie e 4-24
5. SDPS Services
51 FOS/SDPS INEXTACe OVEIVIEWooeeieieieeie ettt eee st ee e sse e esee e nneenees 5-1
5.1.1 OVEIVIEW ..ottt sttt sttt ae e bt sae e b e et e s aeenbeeneenaee e 5-1
5.1.2 SDPS/FOS Interface DESCIIPLIONc.ccverieeieiiesieeie e sieesie e e esee e enee e 5-1
52 DataExchange FrameWOrK ... es e 5-2
5.2.1 SDPS-FOS Network INterfaceccooereeieiienieie e 5-2
5.2.2 Handshaking Control Messages and File Transfer Sequencescccccue..e... 5-3
5.2.3 Message Format and ContentS OVEIVIEWccccceevveeereeiiesieeseesee e seesee e 5-6
Figures
3.11-1 (@80 Y 00411 RSP PPRRPRN 3-2
3.1.2-1. EOC Hardware CONNECLIVITYccevirieriniireeieeesie e st 3-7
3.2.2.1.7-1. Message Passing Scenario One EVent TraCeccoccoveeveneenensieseeseenie e 3-28
3.2.2.1.7-2 Message Passing Scenario TWO EVent Tracecccocceevveceeveeve e 3-30
3.22.2.7-1. Message Passing Scenario EVENt TraCecoveereeienenene e 3-38
3.2.3.5-1. Multicast ODJECt MOGEc.ooiuiiiiiee s 3-44
3.3.3-1. Naming Service - CDS ENtry SLIUCLUMEcocvveieiiesiece e 3-49
3.35.1-1. NaMING SCENANTO HL ..ottt bbb 3-56
3.3.5.1-2. NaAMING SCENAINO H2 ..ot ettt neenreas 3-58
3.35.1-3. NamMiNG SCENAINMO H3ocvieeeeeerie ettt re e ae e e sreenneens 3-60
3.35.1-4. NaAMING SCENANTO HA ...ttt 3-62
3.4.6-1. TIimME SErVICE EVENE TTECEooviieieiice ettt 3-66
3.7.6-1. SeCUrity EVENE TrACE ALooiveeieceeee ettt st 3-85
3.7.6-2. SECUNtY EVENE TIACEH2 ..ottt 3-91
3.7.6.-3. SeCUrity EVENE TrACEHI ...ttt 3-93
4.1-1. FOS-MSS Context DIagramccccceieeveieeseeieseeseeseeseeseesssseesseesesseesseessens 4-2
4.1-2. Management DaLa FIOWSccoiiiiririnieceee e 4-4
4.1-3. EOC Hardware CONNECLIVILYcccvreeriieieiiesieesie et 4-6

Xi 313-CD-001-002

4.2.4.1-1. Get MIB Value DynamiC MOE! ..o 4-15

4.24.2-1. SNMP Trap Generation Dynamic Modelccccooeiieiininneee e 4-16
4.2.6-1. DMS Event Processing Object MOdecoveeieeviece e 4-18
Tables
3.1.2.4-1. Components of CSMS Security Implementationc.ccoccevveerieeiesieeseeseeseenee 3-8
3.2.1.2-1. Interprocess Communication and Notification Object Responsibility Matrix 3-9
3.2.2-1. Message Passing Communication Types Definedccccccoevveecevinccecsiecnen, 3-15
3.2.2.1.6-1. Message Passing Object Responsibility MatriXccccoccvevevivevesiieseeseeeesiene 3-24
3.22.2.6-1 Message Passing Object Responsibility MatriXcccocevverenenienienieienenenee 3-36
3.35-1. Naming Service Object Responsibility MatriXcccccevvveieeiieniieeiie e, 3-54
3.4.5-1. Time Service Object Responsibility MatriXccceeeveereeieseerese e eee e 3-65
3.7.5-1. Security Object Responsibility MatrixXccooeoeieiininercseseeeeeeeeee e 3-83
4.1-1. EOC Management Data TYPESccccvevirieieiiiieeniees e siee e sree s siree s s s 4-5
4.2-1. Faults and Events Reported by ECS Managed ObjeCtSccccvveerveeevieeniecnenne 4-9
5.1-1. FOS Interface Data Type Description (AM-1)ccocviriririeieesese e 5-1
5.2-1. CONLIOl MESSAJES ...oocviecieeciie sttt et e b e e e e be e aeeereesneas 5-3
5.2-2. Authentication Request Message Definitionccceceveeveeceseece s 5-7
5.2-3. Authentication Response Message Definitionccoccoeveeerieeienenesesesesees 5-7
5.2-4. DAN Message Header, and EDU and DAN Labelscccoeveevieciiiviicieciieciee 5-8
5.2-5. Required DAN PVL Parameterscccooevieienieseeie e et esee e 5-9
5.2-6. Short DAA Message DEfiNItIONccoveiiiiniiiiieeceeee e 5-11
5.2-7. Long DAA Message DEfiNItioNccoeiieiiieiiiesee e 5-11
5.2-8. Short DDN Message DefiNitioncccevveveiieiiesececeese e 5-13
5.2-9. Long DDN Message DEfINItIONScccooeiverienineneneseeee e 5-13
5.2-10. Short DDA Message DEfiNItioNcccooeiiieiiierie e 5-14
5.2-11. Long DDA Message DEfiNItioNccocveveieesieie et 5-15
5.2-12. D = (= o 11 P 5-16
5.2-13. Data Request ACKNOWIEdgMENT.cccoooiiiiieiecee e 5-17
5.2-14. DataRequest StatuS REQUESLcceeiiiiiiiiiie ettt 5-17
5.2-15. Data REQUESE SEALUSccveiiiiiieiiicreseesieee e 5-18
5.2-16. Data Request Cancellation REQUESEcceceeiieciicie et 5-18
5.2-17. Data Request CancCellationcccveeeieeie et 5-19

Appendix A. MSS Managed Hardware Objects
Appendix B. MSS Managed Application (Software) Objects

Abbreviations and Acronyms

Xil 313-CD-001-002

1. Introduction

1.1 Identification

The contents of this document defines the ECS Internal Interface Control Document for the Flight
Operations Segment (FOS). Thus, this document addresses the Data Item Description (DID) for
CDRL item 051 313/DV2 under Contract NA S5-60000.

1.2 Scope

Thisdocument definesthe interface between the Flight Operations Segment (FOS) and the Science
Communications and Development Organization (SCDO). In particular it defines the SCDO
Services that FOS will use in the design and how they interface with the Flight Operations

Segment.

This document reflects the August 23, 1995 Technical Baseline maintained by the contractor
configuration control board in accordance with ECS Technical Direction No. 11, dated
December 6, 1994.

1.3 Purpose
The purpose of this document is to define the interface between FOS and SCDO.

1.4 Status and Schedule

This submittal of DID 313/DV 2 incorporates the FOS/SCDO interface detailed design performed
during the Critical Design Review (CDR) time frame. This document is under the ECS Project
configuration control.

1.5 Document Organization

Abbreviations and acronyms contains an al phabetized list of the definitions for abbreviations and
acronyms used within this design specification.

1-1 313-CD-001-002

This page intentionally left blank.

1-2 313-CD-001-002

2. Related Documentation

2.1 Parent Documents
The following documents are the parents from which this document's scope and content derive:

304-CD-001-002 Flight Operations Segment (FOS) Requirements Specification for the
ECS Project, Volume 1: General Requirements

304-CD-002-002 EOSDIS Core System Project, Science Data Processing Segment
(SDPS) Requirements Specification for the ECS Project

304-CD-003-002 Communications and System Management Segment (CSMS)
Requirements Specification for the ECS Project

304-CD-004-002 Flight Operations Segment (FOS) Requirements Specification for the
ECS Project, Volume 2: AM-1 Mission Specific

423-41-02 Goddard Space Flight Center, Functional and Performance

Requirements Specification for the Earth Observing System Data and
Information System (EOSDIS) Core System

2.2 Applicable Documents

The following documents are referenced herein and are directly applicable to this document. In
the event of conflict between any of these documents and this document, this document shall take
precedence.

305-CD-001-002/ Flight Operations Segment (FOS) Design Specification and FOS
311-CD-001-002 Database Design and Database Schema Specifications
305-CD-002-002 EOSDIS Core System Project, Science Data Processing Segment
(SDPS) Design Specification for the ECS Project (under devel opment)
305-CD-003-002 Communications and System Management (CSMS) Design

Specification for the ECS Project

2.3 Information Documents

The following documents, although not directly applicable, amplify or clarify the information pre-
sented in this document, but are not binding.

311-CD-001-003 Flight Operations Segment (FOS) Database Design & Database Schema
for the ECS Project

2-1 313-CD-001-002

This page intentionally left blank.

2-2 313-CD-001-002

3. Communications Subsystem (CSS) Services

3.1 CSS Overview

The Communications Subsystem (CSS) provides for the interconnection of users and service
providers, transfer of information within the Earth Observing System Data Information System
(EOSDIS) Core System (ECS) and between ECS and many EOSDIS components, and
management of all ECS communications components. It supports and interacts with the Science
Data Processing Segment (SDPS) and the Flight Operations Segment (FOS). This section provides
an overview and critical design characterization of CSS services required for FOS, its users and
operators, and the Management subsystem (MSS - refer to Section 4 of this document).

The CSS provides ECS applications, including all FOS, SDPS, and CSMS components, with
services for distributed communications. The CSS is composed of a combination of Commercial
Off The Shelf (COTS), customized public domain software and custom applications to provide a
highly automated and integrated means for providing these distributed processing capabilities to
the various ECS applications and ECS users. This section describes the use of CSS services to
provide distributed communications capabilities to FOS applications, located at the EOS
Operations Center (EOC) and ISTs, and other FOS users. FOS applications communicating with
the ECS Management Subsystem (M SS) also use these CSS distributed services.

The CSS services and interfaces have been described in detail in the following documents:

* 305-CD-012-001 Release-A CSMS Communications Subsystem
Design Specification for the ECS Project;

* 313-CD-004-001 Release A CSMS/SDPS Internal
Interface Control Document for the ECS Project; and

e 542-TP-003-001 Release A Communications and Management
Subsystems Developer's Guide for the ECS Project.

In the rest of this section only CSS services and interfaces that are directly required and used by
FOS applications and their users are addressed. Pleaserefer to the above mentioned documentsfor
complete details on the CSS services and their interfaces.

3-1 313-CD-001-002

3.1.1 CSS Context

ECS Science &
Flight Operations Services

SDPS FOS

ESDIS Prgvide Time Service

Provide| Communications
Provide [Security Services
Exchange Mail Messages ECOM*

Provjde BBS Access

DAAC Mgt

CooNjnate Operations
PerformMadministration

M&O Staff Report Status PSCN
Provide Mail Acc®gs
Provide BBS Acces!

ECS Provide Communicatio
Operations Provide Security Services

Management
— —

00E

NOLAN

Support Interoperability i
Version 0

rovide Security Services

Local

Science Use Networks

1]
BIBEEY

SCF EOSDIS/other
Commun-

ide BBS A xchange f .
Tovide ccess 9 ications

Int'l Partner Provide Security SeNices

EOSDIS) _ .
Users Provide Securily Services
Support Data Exchange

Support Interogerability

(SDPF) (TSDIS) (NOAA) (EDOS)(IST User

*Early AM-1 Mission
Test Related

—

TRMM Mission Related

Figure 3.1.1-1. CSS Context

CSS is distributed across all ECS components. On client and server platforms, the CSS provides
FOS applications with access to legacy services such as mail, bulletin board, file transfer and host
access as well as object-oriented infrastructure services upon which to execute client-server
operations. Client platforms outside the ECS installation (e.g., ISTs) are provided with a subset of
CSS services which are integrated within the ECS Toolkit software. In addition to installation on
SDPS and FOS platforms, CSS services are aso installed on CSS and MSS servers and
workstations distributed throughout the ECS.

3-2 313-CD-001-002

Through the NASA Science Internet (NSI) and local institutional network connectivity, CSMS
supports FOS service access by EOSDIS user communities, including IST operations. These
interfaces facilitate exchange of various data items (e.g., science products, algorithms, ancillary
data sets) aswell asinteractive access sessions with FOS and CSM S management services. Within
ECS, CSM S communications services are provided to support FOS applications and infrastructure
to facilitate peer-to-peer, client-server communication including required value-added services.

A brief summary of each of the CSClsis described here. A more detailed version of thOse services
that directly affect FOS software devel opment are presented in more detail later in this section.

NOTE: Usage of the CSS servicesisbased on requirements of the FOS applicationsfor distributed
communications. At a minimum a client-server or peer-to-peer application will use the CSS
directory/naming service and security service at the initiation of asession. During theinitiation of
the session the application specifies the method of communication (i.e., IPC/HCL, message
passing, RPCs, sockets) to be used and the level of security required.

Directory Naming Service

The Directory Naming Service provides a reliable mechanism by which distributed applications
can associate information with names. Its primary purposeisto allow clients to locate servers. Its
capabilities, however, are general-purpose, and it can be used in any application that needsto make
names and their attributes avail able throughout a network.

CSS will provide implementation of both the DNS and the X.500 by supporting BIND and OSF
Global Directory Service and OSF Cell Directory Service (CDS). It also provides application
programmers the ability to store, retrieve, list information in the locally supported namespaces.
The DNS and X.500 namespaces are used to connect the locally supported CDS namespaces. The
functionality provided here will be implemented on top of XDS/XOM interfaces. As such,
application programmers can use the above mentioned services (store, retrieve, list) in CDSaswell
as OSF GDS.

Security Service

The security service provides secure transfer of data on local and wide area networks. It provides
mechanisms to verify the identity of users, and to determine whether users are permitted to invoke
certain operations (authentication and authorization). Transmission of datais protected through the
use of checksums and encryption of data. Authentication is provided by trusted third party (secret
key) authentication. Authorization is based on Access Control Lists. The protocol used for
authentication is Kerberos. All of these features are implemented within the ECS domain by
employing OSF/DCE Security Services.

Multicast

Multicasting is a mechanism through which a single copy of dataistransferred from a single point
to several places. Multicasting allows a sending application to specify a multicast address and send
one copy of the data to that address. This data is then distributed through the Multicast backbone
to all the applications listening at that address. This reduces the network traffic and improves the
performance.

Multicast is being used by FOS as a Release B service. Descriptions of this service are presented
in Section 3.1.2.

3-3 313-CD-001-002

M essage Passing Service

The Message Passing Service allowsfor the exchange of information between applications running
on different platforms. Clients send data to servers, which process the data and return the result
back to the client. This interaction can be classified into three categories. synchronous,
asynchronous, and deferred synchronous.

CSS will provide two implementations of Message Passing. The first model will provide for
asynchronous and synchronous message passing - byte streams only - with store and forward,
recovery and persistence. It will also include the concept of groups where alist of receivers belong
to agroup. A message sent to the group will be delivered to all the addressesregistered in that local
group. The second model will provide for asynchronous and deferred synchronous communication
without recovery.

Both implementations are designed to take advantage of OODCE-provided DCE-Pthread class
which is used to start and control the execution of a thread. The second mode requires more
programmer involvement than the first model. Message Passing Service is generally intended to
handle low volumes of data per message. Compare with k/ftp (below) for bulk data transfer.

Thread

A thread isalight weight process without the actual process overhead. Threads provide an efficient
and portable way to provide asynchronous and concurrent processing, which is a requirement of
network software. Threads can maintain thread specific data and can also share data with other
threads in an application. This service provides functionality to create, maintain (scheduling,
locking, etc.) threads.

Time

The Time Service keeps system (host) clocks in the ECS network approximately in sync by
adjusting the time kept by the operating system at every host. This service changes the clock tick
increments (rather than the actual clock) so that host clocks will be in sync with the some reference
time provided by an external time provider. CSS will also provide a way to simulate time by
applying a supplied deltatime to the actual time. With in ECS, OSF DTS will be used to sync the
system clocks. For more information please refer to Section 3.4.

LifeCycle

Managing a system involves managing individual applications. An operator may want to start a
new application, shutdown/suspend a running appellation due to anomalies. An application may
not be active all the time to accept requests. In order to effectively use the CPU and memory it is
desired to control the applications as well s some objects residing in the application by starting
them on demand.

LifeCycle services can be broadly classified into two categories: Application and Object level.
LifeCycle servicesfor applicationsinvolve Startup, Shutdown, Suspend and Resume functionality
on applications. This functionality lets the M& O manage server applications. MSS provides the
application related LifeCycle functionality. CSS provides the internal APIsthat are needed for the
MSS to control the applications. LifeCycle services for objects provide the application
programmer with the functionality to create and delete server objects residing in different address
spaces.

3-4 313-CD-001-002

Distributed Object Framework (DOF)

In an object oriented processing architecture, objects may be distributed in multiple address
spaces, spanning heterogeneous platforms. The basic contract between an object and itsusersisthe
interface that the object provides and users can use. Objects can be spread across the network for
reasons of efficiency, availability of data, etc. From the perspective of the requester of a service,
invocation should be the same no matter where the object physically resides.

The distributed object framework will be implemented using OODCE. The set of core DCE
services are naming, security, threads, time, rpc. In order to aid the application programmer,
another layer of abstractions is provided with OODCE. Four generic classes. DCEOD;,
DCElInterface, DCEInterfaceMgr, and ESO will be available for application programmers to
implement client-server applications.

Electronic Mail (E-Mail)

E-mail is a standard component of Internet systems. It is useful for asynchronous, relatively slow
notification of many different types. Also, E-mail is persistent, and will continue to try to deliver
even if there are temporary network outages. The CsEmMailRelA class provides object-oriented
application program interface (API) to create and send e-mail messages.

File Access-k/ftp

FTP is a Internet standard application for file transfers. It allows a user to retrieve or send files
from/to aremote server. Thefilestransferred can be either ASCI| or binary files. FTP aso provides
an insecure password protection scheme for authentication. KFTP builds on the standard FTP but
adds a layer for strong Kerberos authentication. The CsFtFTPRelA object provides an object for
managing FTP sessions between clients and serversto allow programmersto transfer files between
machines.

Bulletin Board

Bulletin Board is another Internet standard application, however unlike e-mail, Bulletin Board
messages are directed to al readers of anamed group. It usesthe Network News Transfer protocol
(NNTP) for sending and receiving messages. The CsBBMailRel A object provides object-oriented
application program interface to send e-mail.

Virtual Terminal

Virtual Terminal access refers to remote log on to a machine. This software is provided on all
platforms. The server telnetd will listen to incoming telnet clients and will alow remote logons.
Thereis aso a secure version of telnet and telnetd using K erberos authentication which CSS will
provide where available. This serviceis allowed only within ECS due to security considerations.

X isa Graphic User Interface conforming to the X/Open standard. While X is not a specific CSS
Release A service this description is listed here for informational purposes. It consists of aclient
and a server where the client displays the actua interface. Developing applications in X is
cumbersome and complex. OSF Matif is another standard, layered on top of X which provides a
high level application programming interface to make the application development easier.
Applications developed with Motif will work with an X server. The X client/server connection
presents some significant security risks; therefore ECS will not support applications where the X

3-5 313-CD-001-002

client and the X server reside on different platforms. Users can down load data from ECS and can
use the X application to view the data on their local machines. Alternatively, the program should
consider providing dedicated circuit access from a user client to connect to an ECS X application.

Event Log

Event log provides the programmers the capability to record eventsin to files. Events are broadly
classified into two categories. management events and application events. Each event is recorded
with all therelevant information for identifying and for later processing. Management events needs
to be recorded in a history file and on some occasions reported to the Network Node Manager.
Application events are only recorded into a programmer specified file. Event log provides a
uniform way for the application programmers to generate and report (record) events.

3.1.2 CSS Hardware

The CSS hardware at the EOC consists of the following components:
» Communications Servers
¢ Management Workstations
* Printers

3.1.1.1 Connectivity

The EOC hardware connectivity isdepicted in Figure 3.1.2-1. The EOC LSM resideson aseparate
FDDI ring, with connectivity to FOS systems and the rest of the site provided by aredundant FDDI
switch/router. The MSS L ocal Management Server isequipped with aDAS (dual -attached station)
card that is connected to two FDDI concentrators, providing redundancy in the event of a
concentrator failure. The M SS monitoring workstations are equi pped with an SAS (single-attached
station) interface card, connected to asingle FDDI concentrator.

3.1.2.2 CSS Hardware Components

The CSS communications server isthe primary server for CSS applications and data. It is cross-
strapped to the MSS monitoring / management server to provide for failover (warm standby)
capability, and is populated with CSS applications and as well as the OSF Distributed Computing
Environment (DCE) software (e.g., DCE client services, DCE Directory Server, DCE Security
Server, DCE Time Server),

The management workstation configurations are networked workstations that support all aspects
of enterprise management between the M& O staff and the LSM. The management workstations
are populated with the CSS client, the M SS management agent services, and user-sel ected subsets
of the enterprise monitoring configuration software and data.

3.1.2.3 Failover and Recovery strategy

Analysis of failover strategies supports the integration of the CSS and MSS servers to serve as
warm standby to each other, cross-strapped to RAID devices for critical data access by either
server. CSSlogical server functions are be configured but inactive on the MSS server. In the event
of afailure of either server, the second RAID can be mounted for use by the backup server. All data
isreplicated, and is also routinely safestored in the ECS data server archive.

3-6 313-CD-001-002

Data Storage

Unit
/— \

Real Time Management
Server Workstation
Management
Data Server Server

User Stations

Figure 3.1.2-1. EOC Hardware Connectivity

Specific calculations of reliability and availability of CSS components are provided in
516-CD-001-003, Reliability Predictions for the ECS Project (August 1995), and
518-CD-001-003, Maintainability Predictions for the ECS Project (August 1995).

3.1.2.4 Security Implementation Overview

The CSS, MSS and ISS subsystems all contribute to the ECS security implementation. 1SS
provides router-based security based on TCP/IP packed [IP address and port] address filtering.
CSS provides Kerberos-based authentication, integrated authorization based on DCE access
control, and dataintegrity based on encrypted checksums (provided by DCE). M SS provides virus
checking, accountability, event reporting and analysis, and security policy coordination. Table
3.1.2.4-1 presents ECS security components and their contributions to overall security
requirements. The CSS addresses the first four needs.

3-7 313-CD-001-002

Table 3.1.2.4-1. Components of CSMS Security Implementation

Security Need

CSMS Security Implementation

Authentication

DCE-based Kerberos.
Kerberized ftp, Kerberized telnet.

Authorization and access control

DCE access control.

Router-based filters (port/socket at transport layer, and source and/or
destination address at network layer).

DCE cell configuration / "iso-cell" partitioning.

Data integrity

DCE-based RPCs (encrypted checksums).

Data confidentiality

DCE-based RPCs (encrypted data).

Countermeasures for degradation
in network or processing resource
performance through denial of
service attack

Router-based filters; Support for nsu-IP-routing, application-layer gateways
and bastions.

Security database management

DCE ACL managers, registry database.

Compliance management

MSS COTS & public domain tools for password audits, file system integrity

checking.

Intrusion detection COTS for detecting viruses, worms, Trojan horses, public domain tools (e.g.,

TCP Wrapper).

Security reporting RDBMS.

In addition to service-based contributions to security implementation, ECS has an integrated
logica and physical security partitioning strategy involving DCE cell partitioning (Cell
partitioning is a Release B feature) and use of isolation LANSs at each of the ECS sites. Thus,
although CSS encapsulates DCE services into higher-level, more abstract services for application
developers, DCE plays an important role in maintaining the integrity of the entire ECS.

3.2 Interprocess Communication (IPC) and Notification/Callback
Services

Interprocess Communication Service (IPC) is provided in severa forms for FOS subsystems to
use. In this section, the CSS provided IPC services and their interfaces are presented. Section
3.1.1 presents the Interprocess Communication/HCL interfaces. Section 3.1.2 presents the
Message Passing Service interfaces for synchronous, asynchronous and deferred synchronous
communications. Section 3.1.3 presents the Multicasting Service interfaces.

3.2.1 Interprocess Communication/HCL Overview

In order for FOS processes to communicate with each other, an interface called EcMpTransport
was defined to give global access to certain capabilities of the transport layer and protocol for
specific implementations of the transport layer. Each underlying implementation must provide a
derivation of the EcMpTransport class that the user instantiates to do interprocess communication
and notification.

3-8 313-CD-001-002

For the HCL implementation, there are two derivations. EcCMpHCLMotifTransport for processes
which are Motif based, and ECMpHCL UnixTransport for processes which are non-Motif based.

In addition to the EcMpTransport class, five other classes are provided to support message passing.
The EcCMpAddress class describes the address of FOS services running somewhere in the system.
EcMpBindinglnfo represents an abstract class for information needed to make a connection to a
specific address. ECcMpMessageCb is an abstract ecs message callback class. EcMpMessagel f
provides services to send and receive ecs messages or to send receive buffers of binary data; it is
derived from RWCollectable. The ECMpNameServer is an abstract base class providing global
access to the name server and protocol for specific implementations of the name server.

3.2.1.2 Object Model
Table 3.2.1.2-1 summarizes the Interprocess Communication and Notification classes.

Table 3.2.1.2-1. Interprocess Communication and Notification Object

Responsibility Matrix (1 of 2)

Class Name

Description

EcMpTransport

Abstract base class providing global access to transport layer and protocol for
specific implementations of the transport layer.

EcMpAddress and
EcMpBindinginfo

EcMpAddress contains address information for identifying a specific instance of
an EcMpMessagelf object residing somewhere on the network. The member
data of EcMpAddress was specified by FOS as the data they would like to have
to identify interfaces. It follows:

Information Description Default/Wildcard
processType "o
processMode e
processName "

group o

host name of host "

user name of user e

role "o
spacecraft "

mode "

In addition, there is a myObjRef member data that is set by the EcMpMessagelf
to which the address is assigned to in order to make sure that the address is
unique.

There is also a pointer to some derivation of EcMpBindinginfo which is also set
by the EcMpMessagelf to which the address is assigned. For HCL, this is an
instance of EcMpHCLBIndingInfo, which contains a host name and port number
determined from the host and port of the process which contains the
EcMpMessagelf instance. All of this information is used in the name service
entry identifying the EcMpMessagelf instance

3-9 313-CD-001-002

Table 3.2.1.2-1. Interprocess Communication and Notification Object
Responsibility Matrix (2 of 2)

Class Name Description

EcMpNameServer EcMpNameServer is an abstract class providing global access to the name
server and protocol for specific implementations of the name server. Each
underlying implementation must provide a derivation of the EcMpNameServer
class that can be used to access the name service.

This particular EcMpNameServer knows the details of the specific
EcMpBindingInfo which goes with the implementation so it can make the
appropriate entries in the DCE name service. For HCL, this derivation is the
EcMpHCLNameServer class. Note that when you call EcMpTransport::init(),
the appropriate instance of ECMpNameServer is automatically set up and made
available for you to use. The EcMpNameServer is used internally by
EcMpMessagelf when you ask it to add its address to the name service, thus
making it possible for other interfaces to find it on the network.

EcMpMessagelf and | EcMpMessagelf is an abstract class specifying the protocol for a message
EcMpMessageCh interface object which enables you to send and receive messages and data.
Each underlying implementation provides its own derivation of EcMpMessagelf
that implements these capabilities according to its own interprocess
communication scheme. For HCL, this is the EcMpHCLMessagelf class.
When you call EcMpTransport::createNewlf(address), you automatically get an
instance of the right kind of EcMpMessagelf.

You should think of each EcMpMessagelf as an object that exists somewhere
on the network. This object has a unique EcMpAddress which you give it
specifying how you want it identified (i.e. processType, processName, etc.)
The EcMpMessagelf itself adds a unique object reference and its binding
information. You can use this object to establish communication with some
other object on the network by calling the estConn() member function with the
address of the object to which you want to communicate. Once this is done,
when you call the send() or sendAndWait() behavior, the message or data is
sent to the other object.

By calling the addAddressToNs() behavior, you cause the EcMpMessagelf
object to publish its address on the name service, making it possible for other
EcMpMessagelf objects to find it and send it messages or data. You process
this data by giving the EcMpMessagelf object a derived instance of an
EcMpMessageCb object which you create. When an EcMpMessagelf object
receives a message or data directed at it from another EcpMessagelf object, it
calls the handleMessage() or handleData() member function of your derived
EcMpMessageCb object which presumably knows how to process the data.
If you want to send a reply to the sender of the message or data, you call the
reply() member functions of your EcMpMessagelf object which received the
message or data.

Note that a "message" is an instance of a RWCollectable object. (FOS has
prototyped an EcCRWCollectable class derived from RWCollectable that will
become the message.) "Data" is just an unsigned char buffer of some length
that gets sent without any knowledge of what is inside.

3-10 313-CD-001-002

3.2.1.3 Sample Application Programmer Interface
The following example shows how EcMpTransport will typically be used.
int main(int argc, char **argv)

{

/I Create an instance of the transport layer and make its global access available
EcMpHCL UnixTransport myTransport;
EcMpTransport::setTransport(& myTransport);

Il Ask transport layer to initialize.
/I For HCL, this means doing things like initializing the notifier and message
/l agent. Note that the init() will automatically initialize an instance of
/I EcMpNameServer, making it available for interfacing with the name server.
/1'1f the developer doesn't need the name server, theinitlpcOnly() member
/I function can be called.
if("EcMpTransport::init())

{

... something wrong
return 1;

... do some stuff, like maybe set up some instances
... of ECMpMessagelf (more on this |ater)

/l Now start polling for automatic notification when events happen.
if ('"EcMpTransport::startPoll())

{

... Something wrong

return 1;

}

/I The notifier was stopped, maybe by a call to stopPoll() somewhere, so just exit
/ the program
return O;

}

311 313-CD-001-002

If automatic polling is not desired, and the devel oper wants to manage his/her own event loop,then
the EcMpTransport::checkForActivity() and EcMpTransport::waitForActivity() can be used
instead of startPoll().

Thefollowing code fragments show how EcM pAddress, EcMpNameServer, ECM pMessagel f, and
EcMpMessageCb will typically be used.

Set up an address for a network message interface object.
EcMpAddress *adr = new EcM pAddress;

adr->processType("'sc_control");
adr->processM ode("'primary");
adr->processName("bob™);

... fill out rest of address

/I Create the object assigning it the above address
EcMpMessagel f *msglfObj = EcMpTransport::createNew!f(adr);

Il Instantiate a callback for handling messages directed at the object
MyCallBackClass * cb = new MyCallBackClass;

/I NOTE: you derive MyCallBackClass from EcM pMessageCh
msgl fObj->messageChb(cb);

// Publish the object's address with the name service so other objects can find it to
/I send messages and data
msglfObj->addAddressToNs();

/' Now if the developer wants to use this object to send messages and data to

/[another object on the network, all that is needed is that this object be of type
/I sc_display and of primary mode.

/' Use amask addressin a call to the name server to locate all registered objects
/[which match the criteria.

EcMpAddress maskAdr;

maskAdr.processType("sc_display™);
maskAdr.processMode(" primary");

3-12 313-CD-001-002

EcMpAddressList possibleAdrs;

if(EcMpNameServer::findAddress(possibleAdrs, maskAdr))
{

I/ dust pull the first address out of the list

EcMpAddress *rcvr = possibleAdrs.first();

if (msglfObj->estConn(rcvr))

{

MyMsg msg; // NOTE: MyMsg is derived from RWCollectable (or
I ECRWCollectable)

msglfObj->send(& msQ);

}

possibleAdrs.clearAndDestroy();
}

/I NOTE that instead of going to the name server implicitly, the developer could
I/ have just called msglfObj->estConn() with the mask address as a parameter, and
/' it would have gone to the name service automatically to locate a complete

Il address satisfying the mask criteria. The above example was just done to

/I illustrate name service usage.

Now suppose that a message directed at msglfObj comesin. Then the handleM essage() member
function of MyCalBackClass will automatically be called from within either the
EcMpTransport::startPoll() method iIf doing automatic polling, or the
EcMpTransport::checkForActivity() or EcMpTransport::waitForActivity() methods if doing my
own polling.

MyCallBackClass :: handleM essage(RWCol lectable * msg,
EcMpMessagel f *msglf,
EcMpAddress *senderAdr)
{
... do some processing on the message
// now | want to send a response
MyRspMsg msg; // derived from RWCollectable or ECRWCollectable

3-13 313-CD-001-002

msglf->reply(& msg);

The above code fragments do not show all the behaviors of these classes, but they do illustrate
sometypical usage.

3.2.2 Message Passing Overview

ECS distributed computing consists of a variety of client and server applications running on
different platforms. Clients send data to servers, which process the data and return the result to the
client. This interaction can be classified into three categories. synchronous, asynchronous and
deferred synchronous.

In synchronous mode, a client makes a request and passes control to the server, i.e., waits for an
acknowledgment. The server services the request and returns the result back to the client, at which
point the client gets back the control. The program execution on the client sideis blocked until the
server returns from the service. Thisisablocking call and is referred as "synchronous”.

In asynchronous mode, the client makes a non blocking request. Client processing can continue
simultaneously with the server processing. Asynchronous message passing can be further
subdivided into two parts: guaranteed and non-guaranteed. Guaranteed asynchronous message
passing guarantees the delivery of the message to the receiver (client-to-server or server-to-client).
The sender of amessage can verify the delivery of the message through acknowledgments. In non-
guaranteed asynchronous message passing, the sender should send the message to the receiver only
if the receiver is active and listening. The receiver still may not receive the message due to any
number of reasons, and thisis not considered an error. FOS applications use this method to send
real time telemetry datato |STs asynchronously.

Deferred synchronous model is a superset of the asynchronous model. In deferred synchronous
mode the client makes a call and receives an acknowledgment of the call, but no results; it also
gets control back right away. Once the receiver completes doing any processing with the data,
results are sent back to the client.

Table 3.1.2-1 describes the different types of message passing and when they are generally used.

CSS will implement synchronous, deferred synchronous, and guaranteed asynchronous message
passing using Distributed Object Framework. Deferred synchronous communications involve
some degree of application programmer involvement.

FOS applications like the Off-line Analysis Request process uses the message passing service to
send analysis data to the Off-line Analysis process and to receive the results of such analysis.

The FOS ECS Operations Control uses the message passing service to send schedule information
tothe ISTs.

SDPS process-intensive applications send the intermediate processing state/results to User
Interface (Ul) to display the results of the process done so far.

SDPS subscription service (between the science DataServer and the product generation) needs
guaranteed asynchronous message passing.

3-14 313-CD-001-002

CSS is providing two implementations for Message Passing. Both are designed to work with the
OODCE-provided DCE-Pthread class which is used to start and control the execution of athread.

The first implementation provides asynchronous and synchronous communications (byte streams
only) with store and forward, and recovery - persistence. The concept of groups (one or more
receivers) isincluded into this API.

The second implementation provides asynchronous and deferred synchronous communication.
The CSS API for thisdesign is not going to be as transparent to the user asthe CORBA application
will be, that is, some developer involvement will be required. With respect to Store and Forward,
athread can be created so that it can periodically try to send the message. The CSS API can handle
any data types; recovery will not be supported.

Table 3.2.2-1. Message Passing Communication Types Defined (1 of 2)

Type Description

Synchronous Normally, this is how clients and servers interact using the Remote Procedure
Call (RPC) mechanism. Both the client and server have to support the same
interface. Servers are continuously listening for incoming requests. Each
server, while supporting the same interface, can implement the interface
differently. The client has the choice to bind to a server offering a particular
implementation of the given interface.

The type of arguments that can be used in this mechanism are all the system
defined generic types plus user defined types. This is a blocking call, where the
client has to wait until control returns back to it from the server.

Non Guaranteed This is same as the synchronous message passing except that this is non-
Asynchronous blocking, i.e. the client gets the control back immediately without waiting for the
server processing to complete. In this mechanism, no result is returned. When
a client invokes the request, the system invokes all the servers currently
listening that support the interface. This is used primarily when the client wants
to send some information to interested parties and doesn't care whether they
receive it not. For example, when the CDS server comes up, it sends a
message of its existence to all the (internal framework) directory agents that are

listening.
Guaranteed In guaranteed asynchronous mode, the sender specifies a list of receivers
Asynchronous where he/she wants to send the message. A UUID is received back when the

send request is issued. When a callback is returned indicating that the send
operation completed, a UUID is passed back identifying which message was
sent successfully or not. This is also a non blocking call, returning control to the
sender immediately. The delivery of message is guaranteed in this mode. If a
receiver is not listening, the message will be buffered and sent to the receiver
at a latter time.

The argument types that can be passed are not as general as in the above two
cases, rather restricted to string type. This is used where large quantity of data
needs to be passed, without any processing, e.g., the FOS Product and
Scheduling element passing an instrument schedule to the SCFs.

3-15 313-CD-001-002

Table 3.2.2-1. Message Passing Communication Types Defined (2 of 2)

Type Description
Deferred In deferred synchronous message, a sender sends a message to one receiver
synchronous and gets back a UUID. This UUID is then used at a latter time to receive the

result back from the receiver. This is used in process intensive applications,
where the receiver takes some time to process the request. While the
processing continues at the receiver, control is returned back to the sender
immediately.

As in guaranteed asynchronous message passing, the argument types are
restricted to strings only.

3.2.2.1 Message Passing Implementation One

3.2.2.1.1 Overview

The first implementation will provide for asynchronous and synchronous message passing with
store and forward, and recovery - persistence. The concept of "groups’ isincluded in thisAPI. A
group is a symbolic name representing a number of receivers. Each receiver will be identified by
alogical name associated with a UUID. This API will handle messages consisting of only byte
streams.

3.2.2.1.2 Context

Message Passing is an infrastructure key mechanism and is used by ECS subsystems for
synchronous, and asynchronous communication where a client needs control back immediately
after invoking a remote procedure.

CSS will provide a set of classes (custom code) that will allow FOS and SCDO subsystems to
achieve synchronous, and asynchronous communication. Security isavailableonthisarchitecture.

3.2.2.1.3 Directives and Guidelines
Directives:
The programmer must do the following in order to transfer data:

Define a new class inheriting from the generic EcDcDSyncCom and must implement al
the virtual functions defined in the parent class, Prelnvoke, Invoke, and Postinvoke.

Include the ClidDSyncCom.h header file.
Create aclient or alist of clients.

Set the data pointer to some data that will be used in the overridden Invoke member
function.

Set the address pointer. The address pointer can be an IP, a port number, an object
reference, a CDS name, etc.

Optionally, set the thread policy attributes or just go with the defaults (EcDDcPri_min, and
EcDDcFQ)

Optionally, set the number of retriesin case of exceptiong/errors. Defaults can be used.
Optionally, set the time between retries in seconds. Defaults can be used.

3-16 313-CD-001-002

Call the method Send to transfer data.

Call Done to find out whether the thread has finished execution successfully.
Call Reset to set the flagsto initial values and deallocate memory.

Either re-send or terminate the session.

Guiddines:

This Message Passing implementation utilizes COTS such as OODCE and RogueWave. For
information on OODCE please refer to the HP Object Oriented DCE C++ Class Library
Programmer's Guide. For information on Rogue Wave please refer to SunSoft C++ 4.0.1 Tools.h
ClassLibrary.

It supports persistance. Intermediate queues are maintained, which collects all the messages to be
sent, along with the receiver information and then sends them to the intended receivers. When a
message is to be sent asynchronously, a pointer to it is placed in to an outgoing queue and control
returns right away. The contents of the queue are saved to disk. If no file name is supplied when
instantiating the control call, recovery/persistence is not provided.

Worker threads operate on the outgoing queue and will process simultaneous send operations.
Each request that arrivesis placed at the end of the outgoing queue. After adding the request to the
gueue, the boss thread will wake up a worker thread and this worker thread will perform the send
operation. Once done, it will wait for the next request. If the message fails to be sent, it is placed
back into the queue, the 'time_sent' field is updated, and, it is retried when it reaches the specified
retry time. If it fails all the tries, the message is returned (callback is invoked with its UUID,
destination, message, and send status).

Priorities are assigned to the spawned threads. Initially CSSis designed to support ten threads, with
a configurable number of threads at each priority. A total of five priorities are defined. A higher
priority thread tries to find a message from its corresponding queue and then sends it. In the
absence of any messages in its queue, it looks for messages in the lower priority queues to send.
Threads are assigned for each priority (even the lowest priority). Thisis done to ensure that lower
priority messages are not starved.

In asynchronous mode, when the client sends the data to a set of receiving processes, a pointer to
the datais kept in intermediate message queues and control comes back to the caller immediately.
The message passing logic will locate the server who is continuously listening, and sends the data
to the server.

The server can be running continuously to receive requests from the client. Alternatively, if the
server is not running when the message is sent, the message passing logic can periodically try to
send the message. The sender can specify the number of send-tries, and the time between tries.
After sending the data, the sender will receive an acknowledgment indicating success/failure upon
completion of the send operation.

In this mechanism, each application can receive as well as send messages to other applications.
Each application maintains agroup of outgoing queuesin which outgoing messages are kept along
with other information like destination. Each outgoing queue is associated with a priority.
Messages belonging to a particular priority are kept in the corresponding outgoing queue. At
startup, several threads are spawned whose primary purposeis to pop messages from the outgoing

3-17 313-CD-001-002

gueues and send them to the proper destination. Each message is also associated with the number
of tries, that is, how often it should be sent before declaring afailure (due to unavailability of the
receiver or network failures) and the time period between each retry. The threads try to send the
message the given number of times and calls an application supplied call back either after a
successful send or after the determination of afailure to send the message.

A distributed object is defined with the functionality to transfer messages. After selecting a
message from aqueue, athread creates adistributed client (aproxy object) and invokesthetransfer
method to transfer the message to the server object (the receiving application).

In order to receive messages, each application creates a receiving queue with a unigque name. An
application can create as many receiving queues as needed, each with unique name. This unique
name is used by an application to send messages and it is kept in the Cell Directory Name Space
(CDS) aong with the binding information.

Each receiving queue is associated with a distributed server (atransfer object), which can receive
messages from other applications. When a message is received by the server object, that message
is kept in the queue associated with that object. The ordinary receiving queue provides two
methods. read and read wait. These methods allow the application programmer to retrieve
messages from the queue. The 'GetMessage' method performs a single read operation and returns
amessage from theincoming queue or Null (there are no messagesin the queue) and areturn status.
The 'GetMessageWait' method performs a single read operation; however, this call waits until a
message isread from the queue. Optionally atime to wait may be provided in the wait call, or a
default time period will be used.

Additionally a call back incoming queue is provided. This queue contains one thread which
executes a programmer-defined call back every time a message is received. That is, a thread is
awakened the moment a message arrives in the incoming queue, it invokes the virtual method
'handleM sg', and searches to seeif any other messages arrived, if so, it executes another call back,
else, it shuts down the thread until a new message is received. When a message is read, it is
removed from the queue and from the disk.

Deferred synchronous model is a direct superset of the asynchronous model. While
implementation one does not support deferred synchronous directly, it provides certain
information, such as, the message UUID, so the application programmer can implement deferred
synchronous messages in the application. Alternatively, the application programmer can use the
CSS implementation two to provide deferred synchronous message passing as an infrastructure
service.

Constraints:
Each queue must have a maximum number of messages, a user-defined number.
The messages must be of defined maximum length.

Logical names ought to be unique, internally CDS/GDS will be used to store location in-
formation associated the receiver (logical name-UUID pair).

The message or buffer should not be changed while the sending isin progress; otherwise,
we need to copy the message.

If deferred synchronous is needed, a UUID and the sender's logical name can be used to
send areply back by the receiving end.

3-18 313-CD-001-002

The Message or Buffer should not be changed while the sending isin progress. Otherwise,
we need to copy the message.

3.2.2.1.5 Sample Application Programmer Interface

Sample#1

Thisscenario demonstrates how aprocess can be asender of asynchronous messagesand areceiver
aswell. It also demonstrates the usage of areceiver callback to receive amessage (A process sends
amessage to another process and is able to receive as well).

Description
a. Setup an ordinary receiver session

1.

3.

4.

Instantiate an object of the ECMpMsgPsngCtrl type using a filename (for the outgoing
gueue and for the disk filename/persistence), and an application name (afull CDS path
name + application name).

Using the message passing control object start listening for incoming messages (Initial-
ize). Next, instantiate receiving objects, that is, create an instance of the incoming
gueue object (viathe 'createReceiver' call) and set it to point to the queue the message
passing control classis attached to it.

When amessage comesiin, it gets stored in to the queue associated with the object and
acopy of it is stored on the file associated with the object.

In order retrieve a message two methods can be used: 1) GetM essageWait (block - there
iswait) Performs a single read operation; however, this call waits until a message is
read from the queue. Optionally atimeto wait may be provided in the wait call; 2) Get-
Message (Non Block - thereisno wait) Performsasingle read operation and returns a
message from the Incoming Queue or areturn status (“no more messages’).

b. Setup the sending session

1

A sending session is basically a point-to-point session to send a message. Each sender
session will have alogical name that is needed to contact the receiver. A list of sending
sessions are maintained in agiven application. A sender session list contains a callback
object which provides virtual functions to be called when a send is complete. Thisis
done at the sender side.

Create a callback object and implement/compile the acknowledgment virtual function.
The object EcMpMsgCb has a virtual function named 'handleAck’, this function is
called when a message is delivered to the destination or when the underlying mecha-
nism failed to deliver it within the given constrains(number of tries). This function
takesthe following arguments: aflag indicating success/failure, the number of tries, the
time between tries, the actual message, its length, areceiver address, and a destination
address, and a message identifier. This same unique id is presented to the application
programmer when sending a message.

Create a EcMpSessionList and populate it with the following information: 1) Associate
the callback object just created, 2) Set the number of tries and the time between each
retry, and 3) For each session give the receiver’s (destination) logical name.

3-19 313-CD-001-002

Prepare and send the message to the session list. At initialization time a number of
threads were generated internally which periodically will get the messages from the
outgoing queue and send them. The send call returns back a UUID so the sender that
can be used by the callbacks. This UUID can also be used to get the reply back if there
isone.

C. Setup a callback receiver session

1. The receiver will be notified everytime a message is received. A thread is awakened
when amessage isreceived in the queue. A callback isinvoked at that point.

2. Instantiate an object of the ECMpMsgPsngCtrl type using a filename (for the outgoing
gueue and for the disk filename/persistence), and an application name (afull CDS path
name + application name).

3. Using the message passing control object start listening for incoming messages. Next,
instantiate receiving objects, that is, create an instance of the callback incoming queue
object (viathe createReceiverCb call) and set it to point to the queue the message pass-
ing control classis attached to it.

4. When amessage comesin, it gets stored in to the queue associated with the object and
acopy of it is stored on the file associated with the object. A ‘call back' thread (just one
thread) will be awakened every time a message arrives into the special receiver queue
created by the call 'createReceiverCh'. A call back (virtual function) will be executed.
It will check if there is another message and if so execute another callback. If there are
no new messages it shutdowns the thread until a new message arrivesin.

Step 1 Initialize, and Step 2 Setup Recelver Sessions

/*

The application programmer should include a set of include files given by CSS at the start of the
application.

The EcMpMsgPsngCitrl object is the controller object, through which any number of receiver
sessions can be created. Each receiver session is associated with a unigue name (so other
applications can send messagesto thisreceiver) and aunique file. Thisfileisused for persistence.
When amessage comesin, it isstored in to the queue associated with the object and acopy of itis
stored on the file associated with this object.

Internally, this object also creates a sender queue. All outgoing messages are kept in this queue.

A number of threads are generated internally in theinitialize call which periodically get messages
from the outgoing queue and send them

*/
/I Instantiate the controller object (initialize)
Extern EcM pM sgPsngCitrl* theM sgCitrlP,
theMsgCtrlP = new EcMpMsgPsngCirl(fileNamel), //to store outgoing messages
applNamel); //CDS Name - applic. name
/] Start listening
EcMpM sgPsngCtrl->Listen():

3-20 313-CD-001-002

/I Instantiate receiving objects.
EcMpQueueln *reclP;
EcMpQueueCbin *rec2P;

Il Create an ordinary receiver

// Open adisk file 'fileName2' for this receiver queue (for

/I persistence purposes)

rec1P = theM sgCtrl P->CreateReceiver(receiverUniqueName,
fileName2);

/Il Instantiate the receiver callback object
EcMpMsgCh* msgRecCB_P = new EcMpMsgCh();

Il Create a special receiver
Il Thisreceiver executes a virtual callback function
// the moment a message is received.
/I Also, open adisk file 'fileName3' for this receiver queue
/I (for persistence purposes)
rec2P = theM sgCtrl P->CreateReceiverCb(receiverUniqueName,
fileName3,
msgRecCB_P);
Step 3 Setup the Sending Sessions
/*
A sending session is basically a point to point session to send a message. Each sender session will
have alogical namethat is needed to contact the receiver. A list of sending sessions are maintained

in a given application. A sender session list contains a callback object which provides virtual
functions to be called when an asynchronous send is complete. Thisis done at the sender side.

Create a callback object and implement (compile) the acknowledgement virtual function. The
object ECMpMsgCb has a virtual function named handleAck. This function is called when a
message is delivered to the destination or when the underlying mechanism failed to deliver it
within the given constrains(number of tries). This function takes the following arguments: a flag
indicating success/failure, number of tries, time between tries, the actua message, destination, a
unique id. This same unique id is presented to the application programmer when sending a
message.

*/

321 313-CD-001-002

Il Instantiate the sender callback object
EcMpMsgCh* msgSenderCB_P = new EcMpMsgCh();

/*

Create a sender session list and populate it with the following information:
1. Associate the callback object.
2. Set the number of tries and the time between each retry
3. For each session give the receiver (destination) logical name.

In case of a synchronous send method, the callback is not used. As such anull argument isavalid
one in the constructor. Similarly number of retries and time between calls are applicable only for
asynchronous sends.

*/

Il Instantiate sessions lists and give information (callback, # of tries, destination names...)
EcMpSenderSessionList *ssListP=new EcM pSenderSessionList(msgSenderCB_P);
ssListP->SetTries (5,10); // no of tries, and time between tries
ssListP->Join(LogicalName); // logical name (stored internally in CDS with its
/I respective object UUID
ssListP->Join (anotherL ogicalName);
Step 4 Send a message
/~k
Send aMessage: Thisreturns (output argument) an UUID so the sender can useit inthe callbacks
and the status of the call.
*/
/I Send the message to the group (all in the group will receive it)
status<- ssListP->Send(WaitFlag, // Wait (Synch) or Non-Wait (Asynch) Flag
msgP, /I A void pointer
msgLength, // Msg length
senderAddr, // Destination queue
recAddr, /I Client Queue. If NULL, no receiving at the client
I/ will occur
priority, /I Priority 1/2/3/4/5
uuidFlag, // UUID will be given or not
msgld); /I Thisis an output argument to identify the message
I in the callback method

3-22 313-CD-001-002

/*
In case of a synchronous call, control returns after the call is completed. In this case, the callbacks

are not called. Callers main thread is used to send the message. In case of asynchronous calls, the
message is put in aqueue, which will be sent later by an internal thread.

*/
Step 5 Receiving a message
/*
a. Read - Block (there is wait): Performs a single read operation; however, this call waits until a
message is read from the queue. Optionally atime to wait may be provided in the wait call.
*/
rec1P->GetM essageWait(msg);// wait and dequeue
/*
b. Read - Non Block (thereis no wait)

Performs a single read operation and returns amessage from the Incoming Queue or areturn status
("no more messages')

*/
rec2P->GetM essage(msg);// dequeue
/I ... anything else you want to do ...

3.2.2.1.6 Object Model

Table 3.2.2.1.6-1 summarizes the first Message Passing Service classes which are discussed in de-
tail in the CDR documentation, Release A CSM'S Communications Subsystem Design Specifica
tion for the ECS Project.

3-23 313-CD-001-002

Table 3.2.2.1.6-1. Message Passing Object Responsibility Matrix (1 of 2)

Class Name Description

EcMpMsgPsngCirl The EcMpMsgPsngCtrl object is the controller object, through which any number
of receiver sessions can be created. Each receiver session is associated with a
unique name (so other applications can send messages to this receiver) and an
optional unique file. The file is used for persistence.

When a message comes in, it is stored in the queue associated with the object
and a copy of it is stored on the file associated with this object.

Internally, this object also creates a sender queue. All outgoing messages are
kept in this queue.

A number of threads are generated internally in the initializing call which
periodically get messages from the outgoing queue and send them.

EcMpMsgCb This class will handle two types of callbacks:
1. For ordinary receive messages:
If an ordinary message is received, then handleMsg is invoked;
2. For acknowledgment of messages:

If an acknowledgment is received, then handleAck is invoked. A sending session
is basically a point to point session to send a message. Each sender session will
have a logical name that is needed to contact the receiver.

A list of sending sessions are maintained in a given application. A sender session
list contains a callback object which provides virtual functions to be called when
a send is complete. This is done at the sender side.

A callback object is created and will implement the acknowledgment. The virtual
function handleAck is called when a message is delivered to the destination or
when the underlying mechanism failed to deliver it within the given constraints
(number of tries).

EcMpSessionList This is a container class whose element type is a logical name and will inherit
from the RWTPtrSlist class.

A session list contains a callback object which provides virtual functions to be
called when a send is complete. This is done at the sender side.

EcMpQueue This class will be the parent class for the following:
EcMpQueueln
EcMpQueueCbin
EcMpQueueOut
EcMpQueue inherits from the Rogue Wave library file RWPtrDlist.

EcMpQueueCbin This queue will contain one thread which will execute a callback every time a
message is received. The callback will be a virtual function call. This class
defines a double linked list queue. It inherits from the Rogue Wave Library file,
RWTPtrDlist.

3-24 313-CD-001-002

Table 3.2.2.1.6-1. Message Passing Object Responsibility Matrix (2 of 2)

Class Name Description

EcMpQueueln This class will be used to queue the messages once they are received. It will
provide a Read Wait call and a Read Non-Wait call. The Read Wait call performs
a single read operation; however, this call waits until a message is read from the
gueue. Optionally a time to wait may be provided in the wait call, or a default time
will be used. The Read Non-Wait performs a single read operation and returns a
message from the Incoming Queue (or Null if there are no messages in the
gueue) and a return status. This class defines a double linked list queue. It
inherits from the Rogue Wave Library file, RWTPtrDlist.

EcMpQueueOut In case of a asynchronous calls, the message is put in a queue, which will be sent
later by an internal thread. Controls returns immediately. Worker threads will
process simultaneous send operations. Each request that arrives is placed at the
end of the outgoing queue. After adding the request to the queue, the boss thread
will wake up a worker thread and this worker thread will perform the send
operation. The send operation will not remove the item from the queue yet. Once
done, it will wait for the next request. There will be about five to ten working
threads and one boss thread. If the message fails to be sent, then the 'noOfTries'
gets decreased by one, and the 'lastTimeSent' gets updated to the current time
(when the message came back after the send failed). The message will be
retried once the 'lastTimeSent'+'timeBetweenTries' was reached until the
noOfTries expired. If the message failed to be sent, the message will be returned
(the callback 'handleAck’ will be invoked). The EcMpQueueOut class defines a
double linked list queue. It inherits from the Rogue Wave Library file,
RWTPtrDlist.

EcMpTransferSrv This class is the EcMpTransferSrv manager object. It responds to client's
requests to transfer data which result in the enqueuing of the data.

EcMpTransferCli Class EcMpTransferCliis a surrogate object for making requests to an
EcMpTransfer manager object. An EcMpTransferCli object creates and holds a
single instance of this class which it then binds to successive EcMpTransfer
manager objects to carry the transfer operation.

3.2.2.1.7 Dynamic Model Scenarios
3.2.2.1.7.1 Scenario #1

Abstract

» This scenario will demonstrate how a process can be a sender of asynchronous messages
and areceiver aswell.

I nterfaces
* OODCE provided classes.

Stimulus
» The process wants to send a message to another process and be able to receive as well.

3-25 313-CD-001-002

Desired Response
* A messageis sent and amessage is received.

Participating Classes

* EcMpMsgCtrl, EcMpMsgCh, EcMpSessionList, ECMpMsgQueue, EcMpMsgQueueln,
EcMpMsgQueueOut, EcMpTransferSrv, EcMpTransferCli.

Pre-conditions

* Theuser must determine the receiver identity and under which identity the process wishes
to receive messages.

Post-conditions
* Themessageis delivered, and the notification is passed back to the sender.
* A messageis received from another process and it is retrieved.

Scenario description

a. Setup an ordinary receiver session

1.

3.

4.

Instantiate an object of the EcMpM sgPsngCitrl type using a filename (for the outgoing
gueue and for the disk filename/persistence), and an application name (afull CDS path
name + application name).

Using the message passing control object start listening for incoming messages (Initial-
ize). Next, instantiate receiving objects, that is, create an instance of the incoming
gueue object (viathe 'createReceiver' call) and set it to point to the queue the message
passing control classis attached to it.

When a message comesiin, it gets stored in to the queue associated with the object and
acopy of it is stored on the file associated with the object.

In order retrieve a message two methods can be used: 1) GetM essageWait (block - there
iswait) Performs a single read operation; however, this call waits until a message is
read from the queue. Optionally atimeto wait may be provided in the wait call; 2) Get-
Message (Non Block - thereisno wait) Performsasingle read operation and returns a
message from the Incoming Queue or areturn status (“no more messages’).

b. Setup the sending session

1.

A sending session is basically a point-to-point session to send a message. Each sender
session will have alogical name that is needed to contact the receiver. A list of sending
sessions are maintained in agiven application. A sender session list contains a callback
object which provides virtual functions to be called when a send is complete. Thisis
done at the sender side.

Create a callback object and implement/compile the acknowledgment virtual function.
The object EcMpMsgCb has a virtual function named 'handleAck’, this function is
called when a message is delivered to the destination or when the underlying mecha-
nism failed to deliver it within the given constrains(number of tries). This function
takesthe following arguments: aflag indicating success/failure, the number of tries, the

3-26 313-CD-001-002

time between tries, the actual message, its length, areceiver address, and a destination
address, and a message identifier. This same unique id is presented to the application
programmer when sending a message.

. CreateaEcMpSessionList and populate it with the following information: 1) Associate
the callback object just created, 2) Set the number of tries and the time between each
retry, and 3) For each session give the receiver’s (destination) logical name.

. Prepare and send the message to the session list. At initialization time a number of
threads were generated internally which periodically will get the messages from the
outgoing queue and send them. The send call returns back a UUID so the sender that
can be used by the callbacks or to get areply back.

3-27 313-CD-001-002

8¢-¢

¢00-T00-AO-€TE

Client Application EcMpMsgPsngCtrl EcMsgCb EcSessionList EcMsgQueueln EcMsgQueueOut EcTransferSrv EcTransferCli

Instantiate an
—— object of type
EcMpMsgPsngCtrl

Create o tgoc;ng >
~__queueg an
intitialize the threads

)

Call Initialize ——>>

Call Listen >
 Create a pojnter to an
ordinary incoming queue: rec1P >>
Call
CreateReceiver >
Instantiate an object of
EcMpQueueln type >>
Register the EcTfansferSrv object and have thig object point to
the receiving queue just created >>
<< InQueueP.
<< InQueueP
——rec1P = InQueueP —>>
rec1P->GetN geWait >

Instantiate an object of ECMsgCh —— >~

Instantfate an object of EcSessionLis{type¢ —— >

Set the number of tries and the time betwegn the tries —— >

Call Join(logicalName) >
Call Send >~
Send the messagg to the receiver — >~
Send the message to a receiver ——>>|
<&——Notificatior] comes back
<< HandleAck notifies completion of the Send operation
l&————A message just grrived in the queue
<< The incoming queue deliyers the received message

Figure 3.2.2.1.7-1. Message Passing Scenario One Event Trace

3.2.2.1.7.2 Scenario #2

Abstract

» Thisscenario will demonstrate the usage of a callback to receive a message. The receiver
will be notified everytime a message is received.

Interfaces
* OODCE provided classes.
Stimulus
* Thearrival of amessage.
Desired Response
* A thread is awakened when a message is received in the queue. A callback is invoked at
that point.
Participating Classes
» EcMpMsgCitrl, EcMpMsgCh, EcM pSessionList, ECM pMsgQueue, EcM pM sgQueueChbin,
EcMpMsgQueueOut, EcMpTransferSrv, EcMpTransferCli.
Pre-conditions
* Theuser must determine the receiver identity and under which identity the process wishes
to recelve messages.
Post-conditions
* A callback notification is received informing the user a message arrived.
Scenario description
a. Setup acallback receiver session

1. Instantiate an object of the EcMpM sgPsngCitrl type using a filename (for the outgoing
gueue and for the disk filename/persistence), and an application name (afull CDS path
name + application name).

2. Using the message passing control object start listening for incoming messages. Next,
instantiate receiving objects, that is, create an instance of the callback incoming queue
object (viathe createReceiverCb call) and set it to point to the queue the message pass-
ing control classis attached to it.

3. When amessage comesin, it gets stored in to the queue associated with the object and
acopy of it is stored on the file associated with the object. A ‘call back' thread (just one
thread) will be awakened every time a message arrives into the special receiver queue
created by the call 'createReceiverCh'. A call back (virtual function) will be executed.
It will check if there is another message and if so execute another callback. If there are
no new messages it shutdowns the thread until a new message arrivesin.

Event Trace

3-29 313-CD-001-002

0c-€

¢00-T00-AO-€TE

Internal thread in

Client Application EcMpMsgPsngCtrl EcMsgCb EcSessionList EcMsgQueueCblin EcMsgQueueChbin EcMsgQueueOut EcTransferSrv EcTransferCli

Instantiate an
— object of type
EcMpMsgPsngCtrl Create outgoing

- _queues an >t
intitialize the threads
——=Call Initialize—=>|
Call Listgn >
_ Create a pajnter to an
ordinary incoming queue: reclP >>
Call
TreateReceiver =
Instantiate an object of
EcMpQueueln’type >>
Registef the EcTransferSrv object pnd have this object poinj to
the receiving queug just created >>
<< InQueueR
k&———InQueueR———

—+eclP = InQueueR—>>|

Receiver
. o <—sends a message]|
k«———A mgessage just arrived in the queue

Thread is

awakened >

Thread invokes
<<—used-defined CB

< M ge is deliyered to the client

Figure 3.2.2.1.7-2 Message Passing Scenario Two Event Trace

3.2.2.2 Message Passing Implementation Two

3.2.2.2.1 Overview

Implementation two provides asynchronous and deferred synchronous communication. It is
designed to work with the OODCE-provided DCE-Pthread class which is used to start and control
the execution of athread. The CSS API isnot going to be as transparent to the user asthe CORBA
application will be, that is, some developer involvement is required. For example, with Store and
Forward, the developer using the second implementation needs to create a thread to listen for a
reply from the server. Reply sensing will be OTS with CORBA. In addition, recovery is not
supported with the second implementation.

The CSS API spawns athread to send amessage. This thread invokes predetermined, application-
programmer specializable, virtual functions. The API supports asynchronous communications.

The CSS API also supports deferred synchronous communication. The results produced by the
execution of the thread can be retrieved using the GetResults member function.

The number of tries, as well as the time between each try, must be defined.

Thread scheduling attributes can be defined if the defaults are not desired. Scheduling policy
controls the algorithm used to schedule threads. Scheduling priority controls the treatment of a
given thread relative to other threads. The default scheduling policy isForeground. All the threads
with this policy will be scheduled on a round-robin basis regardiess of their priority. Higher-
priority threadswill get better treatment, but all will get sometimeto run - to provide somefairness
to low-priority threads. Foreground threads can still be locked out by higher-priority thread types,
such as, FIFO or straight Round Robin. The default scheduling priority will apply to the minimum
symbol of the default scheduling policy.

Only one send call can be executed at atime for each method, that is, threads will not be launched
concurrently. The developer can check the status of a thread by calling 'CallinProgress. This
function will return an integer, a'0' for currently in progress, a'l1' for not currently in progress.

The programmer can call the method 'Done' in order to find out whether the operation has finished
successfully or not.

The 'Reset’ is used to deallocate any memory assigned to the results field and to reset the flags.
After Reset, the developer can call Send again or just delete the client object and terminate.

3.2.2.2.2 Context

Message Passing is an infrastructure key mechanism and is used by ECS subsystems for deferred
synchronous, and asynchronous communication where a client needs control back immediately
after invoking a remote procedure.

This service utilizes COTSwithin the OODCE and DCE products. CSS provides one generic class
with virtual functions which FOS and SDPS must inherit in order to achieve asynchronous and
deferred synchronous communication.

3-31 313-CD-001-002

3.2.2.2.3 Directives and Guidelines

The programmer needsto define anew classinheriting from the generic EcDcDSyncCom classand
should implement all the virtual functions defined in the parent class, that is, Prelnvoke, Invoke
and Postinvoke. In Prelnvoke, the user can do any initialization that is needed prior to the transfer,
Invoke executes the actua transfer method. Once control returns back from Invoke, Postinvoke is
called. This method can take care of the Notifications in the case of Asynchronous message
passing.

The mainideabehind this API isto allow the programmer to spawn athread for listening purposes
and then release it so that the main thread is available to perform other operations such as sending
data.

The programmer must do the following in order to transfer data:

« Set adatapointer to some datathat will be used in the overridden Invoke member function.
It isrepresented as avoid pointer, to allow for various types of data.

+ Set the address pointer to some address that will be used in the overridden Invoke member
function. It can be a port number, an IP, abinding, a CDS name, etc. The addressisavoid
pointer. Since the developer, will be setting thisfield, he/she will know how to parseit and
implement it in the Invoke call .

« Cadl the Send method. Internally this method will create a number of threads and invoke
the 'Eval Thread' function which will execute the Prelnvoke, Invoke and Postlnvoke virtual
methods. If the send fails, the call will beretried as many times as defined by the devel oper.
Once the thread finished execution, it is terminated, but the client object will not be
deleted. Results from the thread execution are returned, and 'reset’ needs to be called to
deallocate any memory priory set aside. The programmer can then either send some more
dataor terminate and delete the client object.

Assumptions:

Suppose the client class inheriting EcDcDSyncCom had more that one method, then, for
each method, an instance of the client class will be created, that is, for each one there will
be one call, one thread executing at one time.

3.2.2.2.5 Sample Application Programmer Interface
Sample

This scenario demonstrates how a process can be a sender of deferred synchronous messages and
at the same time operate as a server by listening for incoming requests (process sends a message to
another process, and get areply back).

Description

Step 1 First define anew classinheriting from the generic EcDcDSyncCom and implement all the
virtual functions defined in the parent class, that is, Prelnvoke, Invoke, and Postinvoke. Let the
client class be CliDSyncCom.

For example define the class as follows,
Class CliDSyncCom : public EcDcDSyncCom {

3-32 313-CD-001-002

public:

CliDSyncCom(); // Constructor
virtual ~CliDSyncCom();// Destructor
Il 'mplementation of pure virtual base class functions
virtual ECTInt Prelnvoke();
virtual ECTInt Invoke();
virtual ECTInt Postinvoke();

b

and override the virtual functions.
EcTInt CliDSyncCom :: Prelnvoke()

{
EcTInt ECSStatus;
/I ... do some something before calling Invoke
return ECSStatus;

}

EcTInt CliDSyncCom :: Invoke()

{

EcTInt ECSStatus;
...
/I Suppose there was some class called 'Telemetry' with a method called 'transfer’,
/I then, we set a pointer of type "Telemetry', TelP, to point to*_addr', an IP
/Il address, a port number, a binding, or anything of that type.
if (_data)
{
try // Set up try block for exception handling
{
Telemetry *TelP = (Telemetry *)_addr;
/I In the case of Deferred synchronous, we want to store the results
/[from the computation in'_results
_results = TelP->transfer(....);
}
/I catch any DCE related errors and print out an informative string if any
/loceur
catch (DCEErT& exc)

{

3-33 313-CD-001-002

...

}
}
return ECSstatus,
}
EcTInt CliDSyncCom :: Postinvoke()
{
EcTInt ECSStatus,
/I ... do some something after calling Invoke. This method can take care of the
/I notifications in the case of Asynchronous Message Passing
return ECSStatus;
}

Step 2
Include the following object definitions:
#include "CliDSyncCom.h" // contains the message passing object definitions

Step 3-12 In Main, include the client header definition file and spawn a thread for listening
purposes, and start listening. Call pthread yield to notify the Thread scheduler that the current
thread will release the processor 'thread_listening'.

On the main thread create an instance of the CliDSyncCom object. Set the data pointer to some
data that will be used in the overridden Invoke member function. Data can also be retrieved by
means of the GetData() member function. Set the address pointer. It can be an IP, a port number,
an object reference, a CDS name, etc. Optionally, set the thread scheduling attributes. If they are
not set, the default values for each attribute will be used, that is, EcDcPri_min, and EcDcFg. Set
the number of retries in case of exceptions/communication errors. Set the time between retries in
seconds.

Call Send, athread will get started and executed. The thread creation is done transparently, viathis
Send call. The developer does not have to deal with thread calls other than setting the priority or
the scheduling policy if desired. Check whether the thread has finished execution successfully.
Obtain the results that were a product from the thread execution.

Call Reset to set the flags to '0" and deallocate any memory used (i.e.: on results) . Delete the client
object or reuseiit.

EcTVoid main()

{
Step 3
Il Create Clients. Instantiate a list of EcDcDSyncCom objects

3-34 313-CD-001-002

EcDcDSyncComList* ClientList = new EcDcDSyncComList;

Step 4

Il Create a client, an instance of the CliDSyncCom object

CliDSyncCom *clientl = new CliDSyncCom;

Step 5

/I Set the data pointer to some data that will be used in the overridden Invoke member
I/ function. Data can also be retrieved by means of the GetData() member function.
clientl->SetData((ECTV oid*)params);

Step 6

I/ Set the address pointer. It can be an IP, a port number, an object reference,

// aCDS name, etc.

clientl->SetAddr((EcTVoid*)"/.../csmscell/RelA_Apps/TelemetryTransfer")
Step 7 - Optional, defaults can be used.

/I Set the thread scheduling attributes. If they are not set, the default values for each
/I attribute will be used, that is, EcDcPri_min, and EcDcFg.

EcEDcThreadPriority a priority = EcCDDcPri_low; // scheduling priority
clientl->SetPriority(a_priority);

EcEDcThreadPolicy a policy = EcDDcFifo; I/ scheduling policy
clientl->SetPolicy(a policy);

Step 8 - Optiona , defaults can be used.

Il Set the number of retriesin case of exceptiong/errors

clientl->SetNoOfRetries(5);

Step 9 - Optiona , defaults can be used.

/I Set the time between retries in seconds

client1->SetTimeBetweenRetries(10);

Step 10

/I Send a message in Asynchronous mode. The Invoke method is executed and

/I returns control back to the caller. The Postlnvoke method function is

/I implemented such that, once the Invoke Call completes, Postlnvoke notifies

I/ back the caller about it. Thereis no wait.

/I When send iscalled , athread will get started and executed. The thread creation
/I is transparent to the devel oper

clientl->Send();

Step 11

/I Check whether the thread has finished execution successfully.

3-35 313-CD-001-002

EcTInt job_status = Done();
Step 12
Il Set the'_done' flag to '0" and deallocate'_results.
clientl->Reset();
Step 13
I/ Delete the client1 object or reuseit.
} // End of Main

3.2.2.2.6 Object Model

Table 3.2.2.2.6-1 summarizes the second Message Passing Service classes which are discussed in
detail in the CDR documentation, Release A CSMS Communications Subsystem Design
Specification for the ECS Project, Section 4.2.3.2.

Table 3.2.2.2.6-1 Message Passing Object Responsibility Matrix

Class Name Description

EcDcDSyncCom This class is used to achieve message passing using
asynchronous and deferred synchronous communications. It
is designed to work with OODCE-provided DCE-Pthread
class which is used to start and control execution of a thread.

The user is expected to override the virtual member functions
of this class, which are, Prelnvoke, Invoke, and Postinvoke,
in order to perform whatever operations are needed.

Provides the functionality to

- receive messages from sender

- transmit them to the receivers

— collect and maintain acknowledgment information from
the receiver.

— collect and maintain results from the receiver

— pass the acknowledgment and results back to the
sender.

EcDcDSyncComlList This class is used to send a message to a list of sessions in
the group.

3.2.2.2.7 Dynamic Model Scenarios
3.2.2.2.7.1 Scenario #1

Abstract

* This scenario will demonstrate how a process can be a sender of deferred synchronous
messages and at the same time operate asa server (listen for incoming requests).

3-36 313-CD-001-002

Interfaces

OODCE provided classes

Stimulus

The process wants to send a message to another process, and get areply back. It also listens
for incoming requests.

Desired Response

A message is sent and its result comes back.

Participating Classes

EcDcDSyncCom

Pre-conditions

The user must determine the receiver identity and under which identity the process listens.

Post-conditions

The message is delivered, and the notification is passed back. The result comes back after
the send operation completed.

Scenario description

First define anew classinheriting from the generic EcDcDSyncCom and implement all the
virtual functions defined in the parent class, that is, Prelnvoke, Invoke, and Postinvoke. L et
the client class be CliDSyncCom.

In Main, include the client header definition file and spawn athread for listening purposes,
and start listening. Call pthread_yield to notify the Thread scheduler that the current thread
will release the processor ‘thread listening'.

On the main thread create an instance of the CliDSyncCom object. Set the data pointer to
some data that will be used in the overridden Invoke member function. Data can also be
retrieved by means of the GetData() member function. Set the address pointer. It can be an
IP, a port nhumber, an object reference, a CDS name, etc. Optionally, set the thread
scheduling attributes. If they are not set, the default values for each attribute will be used,
that is, EcDcPri_min, and EcDcFg. Set the number of retries in case of exceptions/
communication errors. Set the time between retries in seconds.

Call Send, athread will get started and executed. The thread creation is done transparently,
viathis Send call. The developer does not have to deal with thread calls other than setting
the priority or the scheduling policy if desired. Check whether the thread has finished
execution successfully. Obtain the results that were a product from the thread execution.

Call Reset to set the flags to ‘0" and deallocate any memory used (i.e.: on results) . Delete
the client object or reuse it.

Event Trace

3-37 313-CD-001-002

8e-€

¢00-T00-AO-€TE

Client Application
Main Thread

Spawn a thread and
start listening >

Call Pthread_yield to notify
the Thread Scheduler
—— that the current thread —>
will release the processor
‘Listen_thread'

——After setting initializing parameters,

I<&——Control comes back———]

Listen_thread EcDcDSyncCom

call Send (Async communicationsy—=>|

Server Application

Spawn a thread and send

a message >

<< Control comes back right away-
Inquire whether the send|operation has completed)
Call Done > Inquire >
<<
<< Status of thel Send operation
Call Get|Results >>|
——————O0btain the results——>>
<< Results return
Call Reset >

Figure 3.2.2.2.7-1. Message Passing Scenario Event Trace

3.2.3 Multicast

3.2.3.1 Overview

Multicasting is amechanism through which asingle copy of dataistransferred from asingle point
to several places. In the point-to-point communications, dataistransferred from one application to
another application. If an application needs to send the same data to several other applications, the
same data is needed to be sent to each of the receiving applications. Multicasting allows a sending
application to specify amulticast address and send one copy of the data to that address. This data
is then distributed through the Multicast backbone to all the applications listening at that address.
This reduces the network traffic and improves the performance.

3.2.3.2 Multicast Context Within FOS

The multicast API(s) will be used by FOS for distributing three types of data:
1. Real-timetelemetry
2. Events
3. Shared playback

FOS shall use other standard API(s) or protocols (such as TCP/UDP) for al other datatypes. Each
of the three types is detailed below:

Real-time Telemetry

Real-time telemetry is sent from EDOS to the EOC. The dataflow isunreliable and uses UDP/IP-
multicast in conjunction with EDOS-provided multicast routers. The multicast |P groups will be
predefined, and each group will reflect a different telemetry data stream. Thus, EOC hosts need
only receive the data stream they are interested in and therefore do not require a mechanism to
notify EDOS of group membership.

Each EOC Operational LAN host will receive telemetry directly from EDOS simply by listening
to the appropriate pre-defined multicast address. A multicast reflector will be created for each
multicast group to forward the EDOS telemetry to the ISTs.

The multicast API(s) on the EOC hosts will be used for the receipt of EDOS multicast telemetry
data. The API(s) will aso be used by the multicast reflector to forward telemetry to the ISTs that
registered on the reflector.

Events

Events are sent from any EOC multicast capable host in response to some significant change in
status (such as a host connecting to a string or generating a shared playback). The event message
will be sent to every machine on the network. (For instance, if ahost onthe EOC Operational LAN
generates an event, the event message will be sent to all EOC hosts on the Operational LAN and
all ISTswith sessions to Operational LAN hosts. The event message, in this case, will not be sent
to the Support LAN hosts.)

The multicast API(s) will allow for generation and receipt of events, and will handle unicasting
eventsto the ISTs.

3-39 313-CD-001-002

Shar ed Playback

Shared playback consists of non-real-time telemetry being sent to one or more hosts at up to 12X
the real-timerate. Thereceiving group can consist of both ISTs and EOC hosts.

3.2.3.3 Implementation

CSM S will provide FOS with an unreliable multicast service in the form of an API(s) providing
C++ classes. The multicast service shall be implemented at the transport layer via UDP and at the
network layer via|P multicasts or (where necessary) unicasts. The API(s) will allow multicasting
between hosts located within either the EOC Operational or Support LAN (but not between the
two). Communication to the ISTswill be viaunicast, but the API(s) will shield thisdetail from the
FOS applications, so that the application makes a call to send to single group and the API insures
that the datais sent to all members (whether unicast or multicast) of the group. (Note that since
thisis an unreliable multicast service, neither the API(s) nor the underlying protocols insure data
receipt; this must be handled by the FOS application.)

3.2.3.4 Multicast API

The C++ multicast API primarily involves objects of three classes: ECcMpMcCtrl, ECMpMcGrp,
and EcMpMsg. The EcMpMcCirl classisused to do the P multicast initialization, multicast group
| reflector setup, and message polling. Each ECcMpMcGrp instance corresponds to a single
multicast group that the application is a member of. ECMpM cGrp takes an instance of ECMpMsg
class and transmits it to the group and/or constructsit in the receiving process.

The multicast APIs are defined and described below.

L e e
* Multicast API Class Description

NAME Multicast C++ APIs
SYNOPSIS #include <EcMpMc.h>
class ECcMpMcCirl;

class ECMpMcGrp;
class ECcMpMsg;

EcMpMcCitrl Class
The EcMpMcCtrl classis used to do the P multicast initialization, multicast group / reflector set-

up, and message polling tasks.

EcTInt EcM pMcCitrl::Init();

3-40 313-CD-001-002

Description: The Init() method initializes the P multicast function, and should be called once
before using other multicast APIs.

Return: SUCCESS on success, FAILURE on failure
EcTInt EcMpMcCitrl::Poll(EcTBoolean block);

Description: The poll method isused to check the receiving buffer for theincoming data. When
block is set to TRUE, Poll will not return until incoming data is available, otherwise, Poll will
return after the checking.

If the UNIX notification scheme is used, the Poll method should be put in the application main
loop. It is more efficient in checking the receiving buffer when setting the block to TRUE. If
this can not be done, the Poll should be called about every 100 milliseconds. When datais avail-
able, the corresponding HandleM sg() method will be called.

Return: SUCCESS on success, FAILURE on failure
EcMpMcGrp Class

The ECMpMcGrp class contains member variables and member functions needed to join/leave
agroup and send/receive messages to/from a group.

EcTInt EcM pMcGrp::JoinGroup(EcTChar *groupName,
EcTUChar TTL, //CanbeSITE or REGION
EcTBoolean sendonly); // When set to TRUE, member can
/l only send messagesto the group,
// and will not recelve messages from
// thisgroup

EcTInt EcM pMcGrp::JoinGroup(EcTChar *groupName,
EcTBoolean sendonly); // Default TTL isSITE

Description: Before receiving or sending messages to a multicast group, the application must
join agroup first. Each multicast group correspondsto a set of P Multicast Address, Port, |P
TTL, and agroupName.

Two methods can be used to join to amulticast group. Thefirst JoinGroup() method takesthree
arguments, thegroupName, TTL (TimeTo Live) value, and sendonly flag. The API determines
If multicast or unicast should be used to join this member by checking if "UNICAST" environ-
ment variableis set to TRUE. It then searches the namespace to find out if this groupName has
been registered. If not, 'FAILURE' will be returned. Otherwise, the group setup will be made
and 'SUCCESS is returned.

The TTL value can be set to SITE, or REGION. Setting TTL to SITE will keep the multicast

traffic within EOC, but the unicast traffic can still reach 1STs through the multicast reflector. I
the multicast traffic needs to reach EDOS, the TTL value should be set to REGION.

3-41 313-CD-001-002

When setting the sendonly flag to TRUE, the application can send datato the group, but will not
receive any datafromthisgroup. If theflag isset to FAL SE, the application can send and receive
data from the group.

The second JoinGroup() method takes the groupName and sendonly flag. A default TTL value,
SITE isused in this case.

Return: SUCCESS on success; FAILURE on failure

EcTInt EcM pMcGrp::Send(EcMpM sg *msg);

Description: Messages are sent to a group via the Send() methods with a status code returned.

Theargument, msg isan object of EcM pMsg. It contains an instance of the ECM pM sg to be sent.

M essages are unformatted text and binary datawith amaximum size of 8192 bytes. Larger mes-
sages should be broke down to smaller ones before sending.

Return: SUCCESS on success, FAILURE on failure

EcTInt ECcMpMcGrp::GetM essage(EcM pM sg *msg,
EcTUL onglnt waittime);

Description: This GetM essage() method performs asingle read operation, and wait until either
amessage is read from the receiving buffer, or until the waittime (in millisecond) has elapsed.

Return: SUCCESS when message is available; FAILURE on failure; TIMEOUT when the
walittime has elapsed

EcTInt EcM pMcGrp::GetM essage();

Description: The GetM essage() method inform the API that the UNIX notification scheme will
be used to check for the incoming messages. The application uses Poll to check the receiving
buffer and will get notification of the incoming message through the callback function Han-
dleMsg.

Return: SUCCESS on success, FAILURE on failure

EcTInt EcMpMcGrp::GetM essage(XtAppContext app_context);

Description: This GetMessage() method informs the API that the Motif notification scheme
will be used to check for the incoming messages. The GetM essage() method takes Motif appli-
cation context, and registersthe callback function HandleM sg . The XtAppMainLoop isused to
check for the incoming messages.

Return: SUCCESS on success; FAILURE on failure

virtual EcTVoid EcM pMcGrp::HandleM sg(EcM pM sg* msg);

3-42 313-CD-001-002

Description: If GetMessage() method is called, the application will be notified by this virtual
function when amessage is received from this group.

virtual EcTVoid EcM pMcGr p::HandleReflector Fail();

Description: If unicast scheme is used to join the member to a group. When the reflector is
failed, the application will get notification through this virtual function.

EcTInt EcMpMcGrp::Delete();
Description: Application can leave a group through the Delete() method.

Return: SUCCESS on success, FAILURE on failure

EcTChar* EcMpMcGrp::GetGroupName();

Description: Return the name of this group

Return: Pointer to a group name on success;, NULL on failure
EcMpMsgg Class

Multicast service takes an instance of ECMpMsg class and transmitsiit to the group and/or con-
structs it in the receiving process.

EcTInt EcM pMsg:: SetSize(EcTUShortInt size);

Description: Application should first set the size of the message to be sent in bytes when con-
structing a message.

Return: SUCCESS on success, FAILURE on failure

EcTUShortInt EcMpM sg:: Get Size();
Description: Get the size of the received message in bytes.

Return: Size of the received message in bytes

EcTInt EcM pM sg:: SetBuffer (ECT Char *msg, ECTUShortInt size);

Description: Application fillsthe EcMpMsg instance with the location and size of the message
to be sent. Messages are unformatted text and binary data with a maximum size of 8192 bytes.

Return: SUCCESS on success;, FAILURE on failure

3-43 313-CD-001-002

EcTInt EcM pM sg:: SetBuffer (ECT Char *msg);

Description: Application fills the ECM pMsg instance with the location of the message to be
sent. Messages are unformatted text and binary data with a maximum size of 8192 bytes.

Return: SUCCESS on success;, FAILURE on failure

EcTChar* EcMpMsg:: GetBuffer();
Description: Get the location of the received message.

Return: Pointer to the received message on success; NULL on failure

3.2.3.5 Multicast Object Model

Message_Passing_Service

i

o

EcMpMcGrp

EcMpMcCitrl

EcMpMcGrp
~EcMpMcGrp
EcMpMcCitrl JoinGroup

~EcMpMcCirl Send

Init GetMessage

Poll HandleMsg
HandleReflectorFail
Delete
GetGroupName

send l

EcMpMsg

EcMpMsg
~EcMpMsg
SetSize
GetSize
SetBuffer
GetBuffer

Figure 3.2.3.5-1. Multicast Object Model

3-44 313-CD-001-002

3.2.3.6 Multicast Requirements

1

CSMS shall provide FOS with an unreliable multicast API(s). The data flow is unreliable
and unordered at the receiving sites.

The multicast API(s) shall be provided as a set of C++ classes.

FOS requires multicasting within the EOC (on either the Support or Operational LANS, but
not between the two).

The API(s) shall allow FOS applications to pass into it unformatted text and binary data
with a maximum size of 8192 bytes.

The API(s) shal alow for ISTs and EOC hosts to be contained in the same group.
Communication to the ISTs will be via unicast, but the API(s) shall shield this detail from
the FOS applications, so that the application makes a call to send to a single group and the
API sends data to all members (whether unicast or multicast) of the group.

The API(s) shal hide the unicast vs multicast decision and details from the FOS
application.

The API(s) shall allow unicast and multicast communication within a single group.

The API(s) shall support communication (either unicast or multicast) to a group with a
maximum of thr unicast applications.

The API(s) shall allow a 192 kbps [derived from 12X real-time] data stream to be sent to
agroup.

10. The API(s) shall allow FOS applications to receive multicast data from EDOS.
11. The API(s) shall allow hosts to join or leave a group at any time without disrupting the

group communications.

12. The API(s) shall allow multicast capable hosts to send data to a group; but the sender can

choose if it wants to receive data from this group or not.

13. For asynchronous reads, the API shall provide a callback function to be called when data

has arrived. For synchronous reads, the API shall provide amechanism to specify atimeto
wait on read and return from the call when the time to wait has elapsed. The receiver buffer
is64K bytes. If the receiver buffer isfull, the incoming data will get lost. FOS application
has to control the data sending rate and check the receiving buffer fast enough to prevent
this data loss.

3.2.3.7 Release Note

1.

This release supports Solaris 2.x only. It is because the RoughWave Toolkit is used in the
API'simplementation, and we currently only have Solaris and HP RoughWave Toolkitsin
house; while HP-UX does not support IP Multicast without kernel modifications.

The multicast addressinformation for agroup is retrieved from the environment variables.
Before running the multicast applications, groupname ADDR and groupname PORT
environment variables should be defined. Next release will use DCE directory service for
this multicase address |ookup.

3-45 313-CD-001-002

3.3 Directory Naming Service

3.3.1 Overview

The Naming Service is one of the fundamental facilities needed in distributed environments to
uniquely associate a name with resources/principal s along with sufficient information so they can
beidentified and located by the name even if the named resource changesits physical address over
time. Naming is used primarily by service providersto register information about a service and by
clientsto locate the services.

Naming may be used more generally to store and retrieve any general information that is required
to be made available about an object across a network. This information could include a server's
binding information (e.g., an ECS search program that is going to search the databases for a
specified criterion), file set locations (afile containing the forest vegetation for a specific time), an
science product type (e.g., MODIS 2B), a network resource (e.g., a printer), information about
principals (the security namespace containing user passwords, telephone numbers). The Naming
service organizes this information in namespaces.

There are two widely known Name service specifications: SO X.500 and the Internet's Directory
Name Service (DNS). DCE Global Directory Service (GDS) is an implementation of the X.500
specification, and BIND is an implementation of the DNS. Of the two, BIND is more widely used.
While these are standard enterprise namespaces, the interface provided for these namespaces is
different and is at avery low level for the application programmer to use. X/Open had addressed
the need for communi cation across namespaces with an interface called X/Open Federated Naming
(XFN) that specifies a common interface a namespace has to support. The intent of this
specification isto provide acommon abstract interface that can be implemented on top of both the
DNS and X.500 as well as to provide a way for the enterprise namespaces to communicate with
each other.

CSS will provide an implementation of both the DNS and the X.500 namespaces. These
namespaces are used to connect the local namespaces with other namespaces. CSS will provide
OSF Céll Directory Service (CDS) and OSF GDS asthelocal namespaces. Theselocal namespaces
are used to store server binding information. Both CDS and GDS provide a standard (X/Open)
application program interface called the XDS/XOM interface for the application programmers to
interact with them. While namespaces are primarily used to save server information by application
frameworks (like the Distributed Object Framework), they do not normally use this interface to
communicate with the namespace. A specialized, more efficient internal interface is provided for
these application frameworks by the local namespace (like the NS interface for CDS) to store and
retrieve server binding information.

Application programmers need to use the XDS/XOM interface in order to store and retrieve
application specific information into the namespaces. XDS/XOM interface is too tedious and
complex to use. CSS will provide an XFN like interface to store and retrieve information in the
CDS and X.500 conformant namespaces (OSF GDS is an X.500 conformant namespace). The
XFN functionality will be implemented on top of the XDS/XOM interfaces. As such, the
functionality provided here should work on other X.500 namespaces.

3-46 313-CD-001-002

There are standard ways to startup and shutdown the DNS and the X.500 namespaces which will
be provided to the M& O staff by the MSS Management applications. Starting and shutting down
CDS is part of the Distributed Object Framework and is provided to the M& O staff through the
M SS Management applications.

The CDS and GDS consists of entries (name and attribute value pairs). These entries may be
protected through Access Control Lists (authorization). While CDS provides complete Access
Control of these entries, GDS provides only a limited Access Control (authorization) which is
better than UNIX OS Access Control Lists.

A name consists of a sequence of one or more contexts composed according to the naming
convention, and the entry name. Each entry nameis associated with aset of zero or more attributes.
Each attribute in the set has a unique attribute identifier, an attribute syntax, and a set of zero or
more distinct attribute values.

3.3.2 Context

Directory Naming is an infrastructure key mechanism and is used by ECS subsystems who need
to use a Cell Directory namespace as a database to enter or retrieve information stored in the form
of attribute-value pairs.

M& O will use an MSS application to store user profiles containing such information as a user's
telephone number and office location and retrieves it. FOS Planning and Scheduling will use the
namespace to save process related information such as location and messaging interest. Other
applications may use the namespace to store and retrieve any data that should be location
independent and be visible to several applications such as a common message queue to send
messages asynchronously, a Universal Resource Locator (URL) of an object that an SDPS
application uses. All of this interaction with the namespace is done via the interface provided by
the CSS Naming service. Other interaction with the namespace to save and retrieve server binding
information is done viathe local specialized interface.

3.3.3 Directives and Guidelines
Directives:

The programmer must do the following in order to store/retrieve information from the DCE
Namespace:

Log in to the Cell Directory Namespace.

Have read/write access to the directory path where entries will be added, modified, or

deleted viathe API. Thereisacommand, thergy_edit command, that the cell administrator
must run, in order to assign rights to a particular object in the CDS.

Create a context root name. Instantiate an EcDnContext object. The context classis used
to define the type of name to be used in the DCE environment, it takes either a global root
name(/...) or acell root name (/.:) A context object is passed to the Composite Name class
as an ordered sequence of components.

Create subordinate contexts (EcDnContext type of objects).

I nstantiate an EcDnCompositeName object and add the contextstoit. The composite class
allows the user to form a composite name (by means of the AddContext operation). A

3-47 313-CD-001-002

composite name will represent afull path name (equivalent to a directory) or an entry in a
database (equivalent to a file). The user can perform various operations on a composite
name when the composite name isadirectory such aslist the contents, read entries, add and
delete elements (an attribute/value list pair) element into this directory, and get the element
types that had not been previously used.

In order to add or delete an element to the composite name, must construct an element
object using the element class. The element class provides methodsto add values, get value
list, delete values, modify values, and to get the element name.

The element class makes use of the value and attribute object classes. The attribute class
containsthe attribute name and type, and provides methods to obtain the attribute name and
type. The value class contains avalue.

Guiddlines;

The Directory Naming Serviceisused to construct large, enterprise-wide naming graphs. A name-
to-object association is caled a 'name binding'. It is defined relative to a ‘Naming Context'. A
'Naming Context is an object that contains a set of name bindings in which each name is unique.
'‘Naming Contexts' represent 'directories or 'folders and other names identify 'document’ or 'file
kind of objects.

The Context here can be thought of as a database key and the attributes are the actual information
associated with the key. Each context forms a hierarchy where each context has a parent. Each
namespace has a parent that may be another namespace maintained el se where. There will be aroot
context, with no parent, through which all the contexts can be accessed.

Leaf contexts form the key to an entry in the namespace, to which information is attached. This
information contains alist of attributes, each of which contain an identifier, a syntax representing
the type of the attribute, and alist of values for that attribute. Each attribute typeisidentified by a
unique number in the namespace. These unique numbers will be obtained from standard bodies so
that there won't be any conflict in the unique ids used across different namespaces.

CSS Name service provides wrapper functions to map some of the XFN calls to the underlying
namespaces that are supported: CDS/GDS. These wrappers are written on top of XDSXOM
interfaces. Since XDS/XOM are X/Open's standard interfaces to X.500 namespaces, the
functionality provided by CSS will work on other X.500 namespaces. CSS will only support
features that are supported in the underlying namespace. For example, not all namespaces support
searching in the namespace, as such, a search wrapper function will not do anything when acting
on such a namespace. Both the GDS and DNS are replicated and distributed namespaces.

CSS provides five custom classes that can be used by applications to utilize the Cell Directory
Name Space as a database. CSS divided the naming structure into two parts: a context and a list
of elements. Each element represents an attribute-value list pair. Figure 3.2.3-1 pictorialy
describes the CDS entry structure.

3-48 313-CD-001-002

Context

(context or entry name)

Element List

Element List

Elefmentl Elemet 2 Element n

Element

Attribute ValueList

Figure 3.3.3-1. Naming Service - CDS Entry Structure

If the user wantsto see graphically the contents of the Directory Naming Service, the CDS Browser
isavailable. The CDS Browser (a GUI interface) allows a user to view the contents and structure
of the cell namespace. The Browser can both display an overall directory structure, and show the
contents of directories. It can also be customized to display only a specific class of object names.

Since the CDS Browser is not available on all the platforms, the ‘cdscp’ command can be used to
view the contents of the cell namespace. ‘cdscp' alows one to view selected contents of one
directory at atime. It is an interactive command, not a GUI interface. For example, to display all
objectsin the directory ' /.:/common/dev/store ', the user can enter the following:

cdscp=>1 obj /.:/common/dev/store/*

For more information regarding CDS Browser or the ‘cdscp’ command, please refer to the DCE
administration guide.

Regarding the practical limit on the size of a DCE cell, it is still a bit early in the product life to
have substantial experience with large-scale DCE installations. But there are some large cellsin
operation. Certainly it is reasonable to plan on cells with at least thousands of nodes and perhaps
tens of thousands of users.

The University of Michigan Center for Information Technology Integration has done a study in
which they added 50,000 entries to the Cell Directory and to the security registry. Their resultsare
reported in Technical Reports 93-12 and 94-1.

Regarding how much memory and disk space is required for DCE services, this depends on the
size of the cell, the number of users, number of services, etc. According to a paper present by Dan
Hamel of Transarc, at the Decorum conference in February 1994, the following can be used as
rough guidelines:

* Security server: 2k per principal/account; same at replicated sites

3-49 313-CD-001-002

» Directory server: 10k per directory, 1k per object; same at replicated sites

» End-user machines: Each dce_login creates new credential files, which can build up. Space
usage can range from less than 1k to over 100K.

Regarding whether a machine can be a member of more than one DCE cell, thisis not possible at
present. A machine can only bein asingle cell under DCE 1.0.3. However, it will be possible for
cells to cooperate when DCE 1.1 is deployed. See the next question.

Present Available

Implementations of both DNS and X.500 are available. DNS/BIND is available in public
domain fromthe Internet at no cost. CSSwill provide this public domain BIND namespace.
Implementations of X.500 are available as COTS products. GDS is one such
implementation that comes as bundled software with DCE. Since DCE (OODCE) is the
chosen infrastructure, CSS will provide GDS as the X.500 conformant namespace. Both
BIND and GDS arereplicated and distributed namespaces that support local client caching.
They both provide some degree of security.

Future Available

X/Open is currently developing code to support the XFN interface. This standard will be
implemented in Release B, provided that it is ready in that time frame. In Release A, CSS
will develop the required XFN functionality (with the exception of search) on top of the X/
Open XDS/XOM interface for the X.500 namespaces.

3.3.4 Sample Application Programmer Interface

Following are the methods the application's developer uses to store/retrievel/list elements in a
namespace.

Sample #1
List the contents of a Directory Service

Description

In order to create a composite name the user enters a series of atomic namesthat are in accordance
with the CDS naming conventions. First create a context root name. The developer must definethe
type of name to be used in the environment, either a global root name or cell root name. Second,
create the subordinate contexts, instantiate an object of EcDnComposite type and add the contexts
to the composite name.

Then, proceed to list the entries/directories in that composite name; using the composite name
object call the method 'listCtx'.

/I Create a context root name

EcDnContext * ctxP = new EcDnContext(1);// where 1 isfor /..

/I Create subordinate contexts

EcDnContext *ctx_1P = new EcDnContext("hp", 0); // 0 indicates"hp" isadirectory
/I not afile

3-50 313-CD-001-002

EcDnContext *ctx_2P = new EcDnContext("examples®, 0);// O indicates I
"examples' isa

/I directory not afile

/I Instantiate an object of type EcDnCompositeName and add the contexts to it
EcDnCompositeName * comp_nameP = new EcDnCompositeName(ctxP);
status = comp_nameP->add_ctx(ctx_1P);// we now have/.:hp
status = comp_nameP->add_ctx(ctx_2P);// and now we have /.:/hp/examples
/Il List the Directory Service
status = comp_nameP->list_ctx(&IstP);// Obtain contents of /.:/hp/examples

I/ output from list_ctx isIstP which

/l'is apointer to alinked list of

/I containing the immediate I
subordinates of /.:/hp/examples

Sample #2

Add an element into the Directory Service. The user definesthe entry name, type and itsrespective
attribute name, type and value. Makes arequest to add an element.

Description

Create a context root name. Define the type of name to be used in the DCE environment, either a
global root name or cell root name. Then, create the subordinate contexts, instantiate an object of
EcDnComposite type and add the contexts to the composite name, including the entry name.
Proceed to add the element. Instantiate an attribute, instantiate an element, create and instantiate
values, add valuesto the element, and add element into the Directory Service. Using the composite
name object call the method ‘addElement’.

/I Create context root name
EcDnContext *ctx_AP = new EcDnContext(1);// where 1lisfor /..
/I Create subordinate contexts
EcDnContext *ctx_1AP = new EcDnContext("hp", 0);// O indicates "hp" isa
/[directory not afile

EcDnContext *ctx_2AP = new EcDnContext("examples’, 0);// O indicates /l
"examples' isa

/I directory not afile

EcDnContext *ctx_3AP = new EcDnContext("sleeper”, 1);// 1 indicates "sleeper” // is a
filenot a /I directory

/I Instantiate an EcDnComposite name and add the contextsto it
EcDnCompositeName *comp_nameP = new EcDnCompositeName(ctx_AP);
status = comp_nameP->add_ctx(ctx_1AP);// we now have/.:/hp

3-51 313-CD-001-002

status = comp_nameP->add_ctx(ctx_2AP);// add on and get 1 /
.:Ihp/lexamples

status = comp_nameP->add_ctx(ctx_3AP); /[final nameis
Il I.:Ihp/lexamples/sleeper
/Il Instantiate an attribute
EcDnAttribute *attrl = new EcDnAttribute(" CSSAttr);// new attribute
I Instantiate an element
EcDnElement *eltl = new EcDnElement(attrl);// This element isfor the
Il new attribute "CSSAttr"
I Createl/instantiate values
EcDnValue *vall = new EcDnVaue("CSSVauel");// 1st value for "CSSAttr"
EcDnValue *val2 = new EcDnVaue("CSSVaue2");// 2nd value for "CSSALttr"
// Add values to the element
status = eltl->add value(vall);// Add the valuesinto the element
status = eltl->add value(val2);// for the new attribute "CSSAttr"
// Add element in the Directory Service
status = comp_nameP->add_element(elt1);// now add the element to
/1 1.:.Ihplexamples/s eeper

Sample #3
Read elements from the Directory Service.

Description

Create a context root name. Define the type of name to be used in the DCE environment, either a
global root name or cell root name. Then, create the subordinate contexts, instantiate an object of
EcDnComposite type and add the contexts to the composite name, including the entry name.
Proceed to read an element. Using the composite name object call the method 'getValuelList'. This
operation will return the element information (the list of attributes and its values).

Delete the value object from the element and the element from the composite name. Deall ocate any
memory used.

status = comp_name->read_element(& elt_listP);// Composite name contains
Il 1.:Ihp/lexamples/sleeper
// Output from read_elementisa
Il pointer to alinked list of
I/ element objects
/I (attributes and their values)

3-52 313-CD-001-002

Sample #4
This scenario describes how to obtain alist of values pertaining to an element (attribute).

Description

Create a context root name. Define the type of name to be used in the DCE environment, either a
global root name or cell root name. Then, create the subordinate contexts, instantiate an object of
EcDnComposite type and add the contexts to the composite name, including the entry name.
Given an element, specify the particular attribute to be read. Using the element name object call
the method 'getValuelist'. This operation will return the alist of the attribute values.

Delete the val ue object from the element and the element from the composite name. Deallocate any
memory used.

status = eltl->get_value list(&val_listP); // eltl pointsto a specific
/lelement for which we want
/[to obtain al the values
Il Output will beval_listP

/[whichisapointer to a Il
linked list of value objects

Sample #5
Delete avalue from the e ement

Description

Create a context root name. Define the type of name to be used in the DCE environment, either a
global root name or cell root name. Then, create the subordinate contexts, instantiate an object of
EcDnComposite type and add the contexts to the composite name, including the entry name.
Given an element deleteits value.

status = elt1->delete_value(val_obyj); // Delete the value object
[/ from the element

Sample #6
Delete element from the Directory Service

Description

Create a context root name. Define the type of name to be used in the DCE environment, either a
global root name or cell root name. Then, create the subordinate contexts, instantiate an object of
EcDnComposite type and add the contexts to the composite name, including the entry name.
Delete the given element.

status = comp_name->delete_element(eltl);// Delete element eltl from
// the composite name -
Il 1.:Ihp/lexamples/sleeper

3-53 313-CD-001-002

3.3.5 Object Model

Table 3.3.5-1 summarizes the Directory Naming Service classes which are discussed in detail in
the CDR documentation, Release A CSM'S Communications Subsystem Design Specification for
the ECS Project, Section 3.3.

Table 3.3.5-1. Naming Service Object Responsibility Matrix

Class name Description

EcDnContext The EcDnContext class defines the path/set of bindings with distinct atomic
names. Every context has an associated naming convention. A context
object is passed to the EcDnCompositeName object in a structural form as
an ordered sequence of components. It is the key part of the entry in a
namespace that is used to uniquely identify it.

EcDnCompositeName | The EcDnCompositeName class defines a composite name, which is a
nested set of contexts in a given hierarchy concatenated together to
establish a Directory Service path name. This class provides functionality to
create/modify/maintain context part of an entry in the namespace. It
provides methods to concatenate contexts, list the contents of the
composite name in the Directory Service (soft links/object entries), read
entry names, add elements (attribute/value list pair), read element
information, and delete elements.

EcDnElement The EcDnElement class contains an element, which is an attribute-value list
pair. It is referenced by the EcDnCompositeName class. This class provides
methods to add value(s), get value list, delete value(s), modify value(s), and
get the element name.

EcDnAttribute The EcDnAttribute class contains an attribute name, and type. It is also
referenced by the EcDnElement class. This class provides methods to get
the attribute name and type.

EcDnValue The EcDnValue class contains a value. It is also referenced by the
EcDnElement and EcDnAttribute class.

3.3.5.1 Dynamic Model Scenarios
3.3.5.1.1 Scenario #1

Abstract
» Thisscenario describes how to list the contents of the Directory Service.

I nterfaces
» Cdl Directory Service

3-54 313-CD-001-002

Stimulus

* The user enters a series of atomic names in order to create a composite name that isin
accordance with the CDS naming conventions, and makes a request to list the contents of
that directory.

Desired Response
» Theuser will receive the contents of the composite name.

Participating Classes
» EcDnContext, EcDnCompositeName.

Pre-conditions
» The composite name must be established.

Post-conditions

» Thisdoesn't change the state of the naming database. It only retrievesinformation about the
composite name.

Scenario description

» Create a context root name. Define the type of name to be used in the environment, either
aglobal root name or cell root name. Then, create the subordinate contexts, instantiate an
object of EcDnComposite type and add the contexts to the composite name. Proceed to list
the entries/directoriesin that composite name, that is, using the composite name object call
the method 'listCtx'.

3-55 313-CD-001-002

Event Trace

Application

EcDnContext

Instantiate a Context —————————>>

EcDnCompositeName

Instantiate a Coposite Name

Add Context to Cpmposite Name

Returp Status

Instantiate another Context ————————— >

Add second Context fo Composite Name

Returp Status

List the contents of tHe Composite Name

Returp Status

Linked list of the contenfs in the Composite Name

Figure 3.3.5.1-1. Naming Scenario #1

3-56

313-CD-001-002

3.3.5.1.2 Scenario #2

Abstract
» This scenario describes how to add an element into the Directory Service.

I nterfaces
» Cédl Directory Service

Stimulus
* The user defines the entry name, type and its respective attribute name, type and value.
Makes a request to add an element.
Desired Response
» Theuser will receive an status back after calling the add operation. It will indicate success
or failure of the operation.
Participating Classes
» EcDnContext, EcDnCompositeName, EcDnElement, EcDnAttribute, EcDnValue.

Pre-conditions
* Theentry name, itstype, the attribute name, its type and value must be established.

Post-conditions
» Thischange the state of the naming database. It adds information into the CDS.

Scenario description

» Create a context root name. Define the type of name to be used in the DCE environment,
either a global root name or cell root name. Then, create the subordinate contexts,
instantiate an object of EcDnComposite type and add the contexts to the composite name,
including the entry name. Proceed to add the element. I nstantiate an attribute, instantiate an
element, create and instantiate values, add values to the element, and add element into the
Directory Service. Using the composite name object call the method 'addElement'.

Event Trace

3-57 313-CD-001-002

8G-€

¢00-T00-AO-€TE

EcDnAttribute

EcDnValue

Application EcDnContext EcDnCompositeName EcDnElement
Instantiate a context
[object >
Instantiate a Comppsite Name object —— >
Add context to Cpmposite Name —— >
<< Returh Status
Instantiate another
context object >
Add second context fo Composite Name —— >
=4 Returh Status
Instantiate an Attripute object
|Instantiate a Value object
Instantiate an Elemeft object using the Attribute object ps the parameter E—
Using tfe Element object add the Value ofiect —mM8 >
=4 Return Status
— Add Element object using thle Composite Name object >
<< Return Status

Figure 3.3.5.1-2. Naming Scenario #2

3.3.5.1.3 Scenario #3

Abstract
» This scenario describes how to read an element from the Directory Service.

I nterfaces
» Cédl Directory Service

Stimulus

* The user enters a series of atomic names in order to create a composite name that isin
accordance with the CDS naming conventions, and makes a request to read the contents of
anentry (i.e.: afile).

Desired Response

* The user will get the contents of the entry (element) read, that is, the attribute list

information pertaining to that element.
Participating Classes
» EcDnContext, EcDnCompositeName, EcDnElement, EcDnAttribute, EcDnValue.

Pre-conditions
* The composite name and entry to be read must be determined.

Post-conditions

» Thisdoesn't change the state of the naming database. It only retrievesinformation about the
entry name. It returns alinked list of element objects (attribute/value list information).

Scenario description

» Create a context root name. Define the type of name to be used in the DCE environment,
either a global root name or cell root name. Then, create the subordinate contexts,
instantiate an object of EcDnCompositetype and add the contexts to the composite name,
including the entry name. Proceed to read an element. Using the composite name object
call the method 'getValuelList'. This operation will return the element information (the list
of attributes and its values).

* Delete the value object from the element and the element from the composite name.
Deadllocate any memory used.

Event Trace

3-59 313-CD-001-002

Application

Instantiate a context
[object >

——Instantiate a Comp

———Add contextto C

<< Retur

Instantiate another
context object >

———Add second context

<< Retur

——Read Element using t

Return Statu
< Linked List of

EcDnContext

Dsite Name object——>

bmposite Name—— >

N Status

0 Composite Name——>=

N Status

ne Composite Name——>>

5 and pointer to
Element objects

Figure 3.3.5.1-3.

3.3.5.1.4 Scenario #4

Abstract

Naming Scenario #3

EcDnCompositeName

» This scenario describes how to obtain alist of values pertaining to an element (attribute).

3-60

313-CD-001-002

Interfaces
» Cdll Directory Service.

Stimulus

* The user enters a series of atomic names in order to create a composite name that isin

accordance with the CDS naming conventions, and makes a request to list the values of an
element (attribute).

Desired Response
* Theuser will list the contents of the composite name.

Participating Classes
» EcDnContext, EcDnCompositeName, EcDnElement, EcDnAttribute, EcDnValue.

Pre-conditions
* The composite name and entry to be read must be determined.

Post-conditions

» Thisdoesn't change the state of the naming database. It only retrievesinformation about the
element. It returnsalinked list of value objects pertaining to the attribute/element.

Scenario description

» Create a context root name. Define the type of name to be used in the DCE environment,
either a global root name or cell root name. Then, create the subordinate contexts,
instantiate an object of EcDnCompositetype and add the contexts to the composite name,
including the entry name. Given an element, specify the particular attribute to be read.
Using the element name object call the method 'getValuelList'. This operation will return
the alist of the attribute values.

* Delete the value object from the element and the element from the composite name.
Deallocate any memory used.

3-61 313-CD-001-002

Event Trace

Application EcDnContext EcDnCompositeName EcDnElement

Instantiate a context
object >

Instantiate a Compogite Name object —— >

Add context to Composite Name —— >

<< Returr] Status

Instantiate another
context object >

Add second context t Composite Name ——>>

<< Returr] Status

Read Element using the Composite Name ——>>

Return Statusjand pointer to

< Linked List of Element objects

List values of an Element object >

<<—————— Return stgtus and pointer to a linked list of palue objects

Figure 3.3.5.1-4. Naming Scenario #4

3.4 Time Service

3.4.1 Overview

The CSS Time Service will utilize the DCE (Distributed Computing Environment) DTS
(Distributed Time Service) to keep system clocks in the ECS network approximately in sync by
adjusting the time kept by the operating system at every node. Timestamps are used by many
applications when recording event occurrences to a log. The implementation detail of the CSS
Time Service and DCE DTS are invisible to the software devel oper.

3-62 313-CD-001-002

The CSS Time Service will take advantage of the DCE DTS which has a Time Provider Interface
(TPI1). TheTPI will allow an external time sourceto connect to the Time Service. A Time Provider
provides access to standardized or government controlled time devices such asradios, satellites, or
telephone lines. The servers with a Time Service query the Time Providers for the current time
and can pass the standard Coordinated Universal Time (UTC) time valuesto a DTS server and
propagate them through the network. The Time Providers are considered the most accurate source
of time information.

The Distributed Time Service (DTS) synchronizes the system clock on each host by directly
adjusting the time kept by the operating system. Under ordinary circumstances, this is done
gradually so that there are no sudden jumpsin thetime. Itisalso donein such away that thetime
never goes backward. If asystem clock istoo far ahead, it is slowed down until thetimeis correct
by modifying the tick increment.

3.4.2 Context

All segments are expected to use the Time Service for Release A. The CSS Time Service will
provide distributed time with millisecond resolution. Applications utilize the Time Service when
they need to obtain the time in various formats. The Time Service provides APIs to perform these
categories of functionality.

3.4.3 Directives and Guidelines

Since the CSS Time Service utilizes the DCE DTS APIs the devel oper's process must berun in a
DCE cell which contains DTS.

The devel oper must instantiate an ECTiTimeService object to use the CSS Time Service.

The CSS time service will not provide a method to set time but will provide methods to obtain the
time in various formats.

A deltavalue must be placed in the namespace before instaniating an ECTiTimeService object if a
deltaisto be applied to the current time. Some applications may need to simulate the current time
by applying a deltato the current time. The time class allows application developersto obtain the
current time in various formats and optionally lets them apply a predetermined delta to those
values. The deltavalue in the namespace should be a byte stream having the following format

[+]-]dd:hh:mm:ss where
[+]-] indicates plus or minus
dd indicates number of days
hh indicates hours
mm indicates minutes
ss indicates seconds

3.4.4 Sample Application Programmer Interface

A few samples of how to use some of the available EcTiTimeService methods are listed below.
More methods for the EcTiTimeService class are described in further detail in the CDR
documentation (Release A CSM S Communications Subsystem Design Specification for the ECS
Project, Section 4.2.6).

3-63 313-CD-001-002

Sample #1
Instantiate an EcTiTimeService object using a delta value

Description

If the devel oper wishes to use a smulated time, the developer needs to first create an entry in the
namespace and set the value of the delta to be used to create a simulated time (refer to CSS
Directory Services to create an entry in the namespace)

The developer may then instaniate the ECTiTimeService object by doing the following:
EcTiTimeService* ECSTimeP = new EcTiTimeService("NamespaceString");

Note: "NamespaceString" is the string for the name of the entry in the namespace where a delta

value can be obtained.

Sample #2

Instantiate an EcTiTimeService object without using a delta value

Description
The developer may then instaniate the ECTiTimeService object by doing the following:
EcTiTimeService* EcTiTimeServiceP = new EcTiTimeService("\0");

Sample #3
Obtain current ASCII GMT time

Description

First the developer must instantiate an EcTiTimeService object.
EcTiTimeService* EcTiTimeServiceP = new ECTiTimeService("\0");

The devel oper should then call the GetAscGmtTime method as follows:
EcTChar* TimeString; // character string to receive the time
ECSStatus = EcTiTimeServiceP --> GetAscGmtTime(TimeString);

Return value TimeString contains "(1995-05-16-13:23:31.215+00: 00l -----)"

Sample#4
Obtain seconds and nanoseconds time values

Description
First the developer must instantiate an EcTiTimeService object.
EcTiTimeService* EcTiTimeServiceP = new ECTiTimeService("\0");

The developer should then call the GetSecNanoTime method as follows where seconds has been
declared as unsigned long and nanoseconds has been declared as long:

ECStatus = EcTiTimeServiceP --> GetSecNanoTime(seconds, nanoseconds);

3-64 313-CD-001-002

3.4.5 Object Model

Table 3.4.5-1 summarizes the time class which is discussed in detail in the CDR documentation
(Release A CSMS Communications Subsystem Design Specification for the ECS Project,
Section 3.4.5).

Table 3.4.5-1. Time Service Object Responsibility Matrix

Object Responsibility

EcTiTimeService Retrieving timestamp information
Converting between binary timestamps and ASCII representations

3.4.6 Dynamic Model Scenario

Abstract
* An application wishes to obtain a simulated time.

Interfaces
* Time Service

Stimulus

* An application constructs an ECTiTimeService object with a delta value to be used for
simulated time and then makes a request for the time.

Desired Response
» Application receives the correct simulated time.

Participating Classes
EcTiTimeService

Pre-conditions

» The application must place an entry in the Directory Service which contains a delta value
to be used in simulating time. The application must also construct an ECTiTimeService
object using the "Name" in the Directory Service where the delta value can be found.

Post-conditions
* The application receives the correct simulated time and continues processing.

Scenario Description

» The application places an entry in the Directory Services that contains the delta value and
constructs an ECTiTimeService object using the "Namespace" where the delta value was
placed. The application than makes a request to obtain the ASCII GMT time.

3-65 313-CD-001-002

Event Trace

Application Directory Service

Application places delta
value in the namespace >

Application contructs t

delta value c

Request to obtain th

ASC GMT Timd
<< the simd

me object using the

name in the nanjespace where >

hn be found

Request for delta value

<<——— using name in the
directory service

Delta Value———=>

e ASC GMT Time >

plus delta value,

EcTiTimeService

lated time

Figure 3.4.6-1. Time Service Event Trace

3.5 User Authentication

This section contains the description of the User Authentication Service and the User Account
Management Service, which is provided by the Science and Communi cations Development Office

(SCDO) and is used by FOS.

3.5.1 User Authentication Description

SCDO will provide FOS with an authentication service that will verify the identity of users when
logging in. The service will return a status that will be used to accept or regject the user's attempt to

login to the system.

SCDO will provide FOS with auser account management service that will alow authorized users

to manage the user information, including user name, password, and user role.

3-66

313-CD-001-002

3.5.2 User Authentication Context Within FOS

The authentication service will be used by FOS to verify the user name and user password when
an attempt is made to login to the system. The user's login request will be alowed or rejected
depending on the returning status of the authentication check.

The authentication service also shall keep information (user name, role) about all users currently
logged onto the system. This service will be used by the FOS email utility to send messagesto the
users currently logged onto the system based upon the user's role. The user account management
service will be used by FOS authorized persons to add, delete, and modify the user's account. An
authorized user will use this service to add a user to the system, to delete a user from the system,
or to modify the user's role information.

The available user roles (types) are:
command activity controller,
command management analyst,
database manager,
flight systems engineer,
ground controller,
ground systems engineer,
instrument controller,
instrument engineer,
instrument evaluator,
instrument planner,
mission planner,

M Ssion supervisor,
operations coordinator,

ops controller,

shift supervisor,

spacecraft activity controller,
spacecraft evaluator,
spacecraft engineer,
spacecraft planner,

system specialist,

software maintenance engineer,
IST user,

EOC user.

3-67 313-CD-001-002

3.5.3 User Authentication API

3.5.3.1 Introduction

This section describesthe Authentication API to verify the user name and password. ThisAPI uses
DCE security to authenticate a user. Additional APIs will be required to meet the remaining user
authentication requirements identified in Section 3.4.5 of thisICD.

The Authentication API uses DCE security to authenticate a user:

EcTVoid

CsDcChkA uthn(
EcTChar * principalName,
EcTChar * principal Passwd,
EcTInt *loginStatus);

INPUT:
principalNamePrincipal Name on the registry account.
principal PasswdPassword to be checked against the password
in the principal's registry account.
OUTPUT:
loginStatusA pointer to the completion status. The following
status codes are returned:

1. The sec_login_setup identity() sets up the user's network identity,

2. the sec_login_validate identity() validates the login context
established by sec login_setup_identity(),

3. the sec_login_certify_identity() certifies the security server used
to setup and validate a login context is legitimate,

4. and finally, the sec_login_set_context() sets the network credentials
specified by the login context.

The following error staus codes are returned in the "loginStatus' variable.
CsCDcAuthSuccess This call was successful.
CsCDcSecLoginSetupldFailed The identity has not been

successfully established.
CsCDcSecLoginValidateldFailed The identity has not been
successfully validated.
CsCDcSecL oginAcctExpired The account has expired.
CsCDcSecLoginCertifyldFailed Certification was not
successful.
CsCDcSecL oginSetContextFailed Unable to create network
credentialsfor alogin
CsCDcMemoryAllocFailed Memory allocation Failed.

3.5.3.2 Description
The CsDcChkAuthn() API authenticates a user asfollows:

3-68 313-CD-001-002

. The sec_login_setup_identity() isinvoked, which takes the user's principal name as one
of itsarguments. This call causes the client Security runtime to request a TGT and passes
the user's name to the Authentication service. A TGT enables a principal to be granted a
ticket to the Privilege Service.

. Upon receiving therequest for aTGT, the Authentication Service obtains the user's secret
key from the registry database. Using its own secret key, the Authentication Service
encryptsthe user's identity, alongwith aconversation key, inaTGT. The Authentication
Service seals the TGT in an envelope that is encrypted using the user's secret key. The
envelope also contains the same conversation key that is encrypted in the TGT, and is
returned to the client.

. When the TGT envelope arrives, the CsDcValidateCertifyldentity() is invoked, which
takes the user's password. This call passes the password to the local Security runtime
library. Theruntime derivesthe user's secret key from the password, and usesit to decrypt
the envelope. The envelope reveals the conversation key, but the security runtime cannot
decrypt the TGT, sinceit does not know the authentication service's secret key.

. When the Security client runtime has succeeded in decrypting the envelope, the API calls
anetwork layer interface that requests a Privilege-TGT (PTGT) from the Privilege service.
For a PTGT to be granted, however, the user must first acquire a ticket to talk to the
Privilege service, which is a principal distinct from the Authentication service. The
security runtime therefore requests such a ticket from the Authentication service. The
Security runtime encrypts this request using the conversation key it learned when it
decrypted the TGT envelope.

. Sincetherequest for aticket to the Privilege Serviceis encrypted under th conversation key
associated with the TGT, the Authentication Service believes that the identity of the user
has been established. Since the user has proved to the Authentication Service knowledge
of the key, the Authentication Service alows the user to talk to the Privilege service, and
SO prepares a ticket to that service. This ticket contains the identity of the user (and a
second conversation key) encrypted under the secret key of the Privilege service. Likethe
TGT envelope, the envelope containing the ticket to the Privilege service also contains the
second conversation key, for usein conversing withthe Privilege service, andisencrypted
with the first conversation key.

. Upon receipt of the envelope containing the ticket to the Privilege service, the Security
runtime decrypts the envelope using the first conversation key, and in the process learns
the second conversation key. The client RPC runtime send the Privilege Service ticket to
the Privilege service.

. The Privilege service decrypts the icket sent to it learning both the identity of the user and
the conversation key it will useto encrypt itsresponse. Because the Privilege servicetrusts
the authenticity of the user'sidentity, it preparesaPAC which described the user's privilege
attributes. The Privilege service incorporates the user's PAC and a third conversation key
into the PTGT, which is encrypted using the Authentication service's secret key. The
PTGT envelopeis encrypted using the second conversation key and also includes the third
conversation key.

3-69 313-CD-001-002

8. The Security client runtime decrypts the PTGT envelope using the second conversation
key, and learns the third conversation key. It cannot decrypt the PTGT itself, since the
PTGT isencrypted under the secret key of the Authentication Service.

9. At this point the security server has authenticated the user's identity and the user is ableto
acquire information about its privilege attributes that the Privilege service has certified.
The client now calls sec_login

_setup_identity() to set the login context to the identity that has been
established. Henceforth, processesinvoke by this user assume the user's
login context.

3.5.3.3 Example

#incl udé"/usr/i nclude/csms/CsDcAuthn.h"

EcTInt 'Iogi nStatus;
EcTChar *principalName;
EcTChar * principal Passwd;

CsDcCHkAuthn(“ecs", "ecsguest”, &loginStatus);
printf("loginStatus: %d\n", loginStatus);

princi pél Name = (char *)malloc(24);
principal Passwd = (char *)malloc(24);
strcpy(bri ncipalName, "ecs");
strepy(principal Passwd, "ecsguest”);

CsDcCHkAuthn(princi pal Name, principal Passwd, & loginStatus);
printf("loginStatus: %d\n", loginStatus);
system("klist");

free(pri hci palName);
free(principal Passwd);

3-70 313-CD-001-002

3.5.3.4 Files
READM E.authnapi: This file describes the Authentication API.

CsDcAuthn.c: Thisfile contains the source code for the

CsDcChkAuthn() and other Internal functions.

CsDcAuthn.h: Thisfile contains the declaration for the

CsDcChkAuthn API.

CsDcAuthnError.h:This file contains the status codes returned

by the CsDcChkAuthn API.

CsDcAuthnl.h: Thisfile contains internal declarations for

the CsDcChkAuthn API.

EcTypes.h

[ibCsDcAuthn.make.hp: This Makefile creates the shared library for

the CsDcChkAuthn API: /usr/lib/libCsDcAuthn.sl

3.4.3.5 Build process
To build the library, type the following:

% make -f libCsDcAuthn.make.hp

Thisresultsin creation of the library: /usr/lib/libCsDcAuthn.d (edit the
make file to create the library in current directory).

Any application which invokes the Authentication APl needs to be linked
with the library libCsDcAuthn.dl first and also include the header files
"/usr/include/csms/CsDcAuthn.h" and "/usr/include/csms/CsDcAuthnError.h".

3.54

3.5.5
1.

User Authentication Dynamic Model

User Authentication Requirements

SCDO shall provide FOS the capability to add user account information (user name,
password) to the system.

SCDO shall provide FOS the capability to delete user account information (user name,
password) from the system.

SCDO shall provide FOS an API to verify a user's name and password.
SCDO shall provide FOS an API to request alist of FOS user roles.

SCDO shall maintain a list of user information (i.e., user name, user role) for al users
currently logged onto the system.

SCDO shall provide FOS an API to add a user to the list of users currently logged onto the
System.

371 313-CD-001-002

7. SCDO shall provide FOS an API to delete auser from thelist of users currently logged onto

the system.

8. SCDO shall provide FOS an API to modify the user role of auser currently logged onto the

system.

9. SCDO shall provide FOS an API to query information from the list of users currently

logged onto the system.

10. SCDO shall provide FOS the capability to add arole to the list of FOS user roles.
11. SCDO shall provide FOS the capability to delete arole from the list of FOS user roles.
12. All the services that SCDO provides shall be available on all major platforms (Dec, Sun,

HP, and SGI).

3.6 Authorization

This section contains the description of the Authorization Service, which is provided by the
Communications and System Management Segment (CSMS) and is used by FOS.

3.6.1 Authorization Description

CSMSwill provide FOS with an authorization service that determinesif a user should be allowed
to access a service or resource based on predefined criteria. The service will provide feedback to
the invoking application, that will in turn alow or deny the requested access.

3.6.2 Authorization Context Within FOS

The authorization service will be used by FOS to grant privileges to EOC users. A partia list of
EOC Privilegesfollows:

1.

Command Authority - Granted to one EOC operator per spacecraft for the purpose of
sending real-time commands to a specific EOS spacecraft.

Ground Control Authority - Granted to one EOC operator per logical string for the purpose
of modifying the ground configuration for a specific EOS spacecraft .

IST Management Mode - Granted to IST users for the purpose of performing an IST
management function. Could be useto authorize ST usersfor command requests. (Point-
of-Contact - Jim Creegan)

Scheduler - Granted to EOC users for the purpose of scheduling activities. There will be
different Scheduler privileges for each IST site (e.g., CERES can only modify CERES
schedules). (Point-of-Contact - Bill Moore)

System Administrator - Grants a privilege analogousto "root" for the EOC.

DB Administrator - Grants a privilege analogous to "root" for EOC database
mani pul ation.

IST USER - Superset of IST Management Mode, allows user login to IST and do basic
functions.

EOC User - Onewho can log into EOC and do basic functions.

3-72 313-CD-001-002

3.6.3 Authorization Scenario

Invoking the IsAuth function within the appServerObj to check a client's authorization privileges
is accomplished as follows:

class EcsAclDb;
EcsAclDb *_database;

if(_database->1sAuth("EcsA ppObj™)
appMethodX(...);
else
traceob] << "Not Authorized to Perform appMethodX\n";

If the requesting client has permission for appMethodX, IsAuth returns TRUE, otherwiseit returns
FALSE.

The application devel oper creates serverkeytab file using thergy _edit utility. Alsowhen the server
is still up and running, the "acl_edit" client can be run in order to manipulate ACLs. These
procedures are further explained in the Release A CSMS/SDPS Internal Interface Control
Document for the ECS Project (313-CD-004-001).

3.6.4 Authorization Dynamic Model

3.6.5 Authorization Requirements

1. CSMS shal provide FOS with ACLs that can be queried for information regarding user
privileges associated with any resource within the network.

2. CSMSshal allow the FOSto define the domain (principals) and range (permissions) of the
ACLs associated with resources. (FOS will define domain elements to be users of EOC
User Stations, as well as the User Stations themselves.)

3. CSMSshal alow the FOS to specify any principal (local aswell asforeign) in the domain.

4. CSMSshall provide the FOS with the GUI necessary to allow authorized FOT membersto
add and delete usersto/from resource ACLS.

5. Theauthorization service will provide user interface to accept and implement updates to
the ACLs associated with services, so that other system routines, as well as third party
vendor products can access them.

3.7 Security Service

3.7.1 Overview

In distributed systems applications rely on services provided by servers running in different
address spaces on heterogeneous platforms. Servers are independent and their main functionality
is to listen for client requests, process the request and send the results back to the clients. This
division of processing can be done for any number of reasons such as efficiency, dataavailability,
etc. In addition to aclient invoking arequest, and the server processing that request, both the client

3-73 313-CD-001-002

and the server may need to use mechanisms to protect resources aswell asthe integrity of the data
exchanged. These mechanisms are authentication, authorization, tamper-proofing (for data
integrity) and encryption (for data privacy). While authentication should always be used in every
conversation between a client and a server, the mechanisms for authorization, data integrity and
privacy are based on security policies of the system(s) and the application-specific need for those
mechanisms. These concepts are explained in detail in the CSMS requirements document
(DID 304). This document explains how these mechanisms are achieved in the current design.

Authentication isthe process of verifying the validity of aprincipal. Authenticationisusually done
at two points. Initially when users login to the ECS domain, authentication is done by a "trusted
third party” who supplies server's credentials for principal s to use with application servers.

Authorization is the processing of deciding what sort of users/groups should be allowed to access
what services/resources and then allow/deny the service. In authorization, each resource is
associated with alist of permissions that should be granted to different kinds of user and different
kinds of access operations. This is used to selectively to grant certain principals access to some
resources. Authorization is performed by Access Control List (ACL) mechanism. An ACL isan
entry with information such as the name of the user/group and the permissions list associated with
them. which indicates the kind of permission/s given for the user/group. ACLs should be created
and maintained for all the application specific objects.

When dataistransmitted over the network from one application to another, the integrity of the data
should be preserved. Thisisto make sure that the copy of the datathe receiver getsis exactly same
as the data that the sender sends. This tamper-proofing of the data may or may not be used with
methods for protecting the privacy of the data. Checksums or secure hashes are often used to
guarantee data integrity.

Encryption is the process of encoding a message into cipher text using a key. The process of
decoding the cipher text to its original form using akey is called decryption. Encryption is used to
maintain the privacy of data transmitting over the network.

While authentication is necessary, other features; authorization, checksums and data privacy are
optional. ECS application can selectively choose to use these security features depending on their
specific needs.

3.7.2 Context

It is assumed that all ECS services (but not necessarily all clients) run in the DCE/OODCE
environment. M& O needs to be able to create and maintain accountsfor principalsto loginto ECS
hosts. The authentication service is used by the ECS Login service and may be used by both the
SDPS/FOS clients and servers to authenticate each other. The authorization service may be used
by any server to protect access to a resource, such as allowing only the authorized Principal
Investigator to browse through some instrument data. Dataintegrity may be used by in I ST sessions
to make sure that the command requests received from Instrument Investigators are not modified
in transit. Encryption may not be needed by most ECS applications directly, but is used internally
by the other three security services.

3-74 313-CD-001-002

3.7.3 Directives and Guidelines

The OODCE COTs product will be used for the security functionalities along with the following
CSS provided custom software:

« EcsSecurity

Provides alayer encapsulating the underlying security classes such as EcsAcl, EcsAcIDDb,
EcsModifyableAcl, EcsAclStorageManager, DCEAcIMgr, DCEAcISchema and
DCESecld.

Application developers should be able to create ACLs for application specific objects by
using this class. When acls are updated and the application server goes down for some
reason, when it is brought up again, the aclsavailable are theinitial aclsand not the updated
acls. Inorder to havethelatest updated acls avail able for use by the application server every
time it is brought up, this persistent storage is provided. Everytime acl is updated it is
written into persistent storage file and whenever application server is brought up, the
updated acls are written from the persistent storage file back into the memory for use by
application server. For this functionality it is required to implement the methods of the
following classes: EcsAcl, EcsModifyableAcl, EcsAclStorageManager and EcsAclDb.

« EcsFilePassword

This inherits from the COTs provided class DCEPassword. During login context, in case
of interactive principals, password is supplied on command line. The DCEPassword class
takes a keyfile name as one of the arguments and provides non-interactive principals with
their passwords to be stored in the keyfile, so that non-interactive principals (servers) can
establish their identity without doing alogin.

The server keytab file and the persistent aclfile should be placed in the same directory where the
database server isgoing to be executed. It isrequired to give read permission to the server principal
for the serverKeyTabFile, read and write permission for the persistentAclFile. Both these files
should be placed in the same directory where the database server will be executed. The
persistentAclFile will always have the latest Acls of objects.

Besides, the following COTS provided operator interfaces can be used for creating and
maintaining user accounts and Acls, create server keytab file, etc. :

« Operator will use acl_edit to modify permissions to principals to access different services.

« Through rgy_edit operator will create the server keyTabFile to give an application server
principal its own identity during its login context.

« Through rgy_edit, operator creates user accounts.

Section 4.2.2.4 provides examples to demonstrate why and how each of the classes and the
methods should be used by an application developer. Section 4.2.2.6 gives a brief description of
al the COTS and CSS provided security classes. For more information regarding the COTS
utilities, refer to the DCE administration guide.

3-75 313-CD-001-002

3.7.4 Sample Application Program Interface

Sample #1
Setting Client/Server Authentication Preferences

Description

For a secure communication, the first step an application developer has to take, is to set the
following authentication preferences for both the client and the server objects:

Authentication Protocol - Authentication protocol can be DCE shared-secret key
authentication, where the server gets its password from a keytab file for establishing its
login context, or no authentication, where no tickets are exchanged, or DCE default
authentication service (The current default authentication service is DCE shared-secret
key.), or the DCE public-key authentication (which will be supported by DCE 1.2). Thisis
specified by the server (per process) to indicate the type of authentication it is OFFERING,
and by the client (on a per object basis) to indicate the type of authentication it DESIRES
to have.

Authorization Protocol - Authorization protocol can be either No authorization, where the
server performs no authorization, or Name-based, where the server performs authorization
based on the client's principal name, or PAC/DCE based, where the server performs
authorization using the client's DCE Privilege Attribute Certificate (PAC) sent to the server
with each RPC made with binding. The type of authorization protocol is specified by the
client to indicate the authorization type DESIRED by the client.

Protection Level - Protection level specifies the protection level for RPCs made using
binding. It determines the degree to which authenticated communications between the
client and server are protected by the authentication service specified by authentication
protocol. The protection level when selected to be "packet_integrity" will ensure data
integrity (i.e. ensures that data is not modified during transit) by adding encrypted
checksumsto the data. Also specifying the protection level as”packet_privacy" will ensure
the privacy of data through the use of secret-key encryption. However in trying to achieve
data integrity/privacy there is a tradeoff. i.e. more restrictive the protection level, the
greater the negative impact on performance.

i. The appClientObj (per object basis) must invoke the SetAuthinfo() APl asfollows:
a. Includefiles
#include "appC.H" /I Generated by application IDL.
b. Construct an instance of the Client Class
appClientObj appClOby;
c. Invoke the SetAuthinfo API
appClObj.SetAuthlnfo(
(unsigned_char_t*) princName,// Name to identify server principal.

rpc_c_protect_level _pkt_integ,// Specifies packet level protection whichisthe// highest
level guaranteed to be present in the RPC I runtime.

3-76 313-CD-001-002

rpc_c_authn_dce secret, // Specifies DCE secret-key authentication protocol.

(rpc_auth_identity _handle t)NULL, // NULL specified to use the default security login //
context for the current address space.

rpc_c_authz_dce); // PAC/DCE based authorization protocol specified.

ii. The ESO (DCEServer object 'theServer', aready defined in the DCEServer.C file) should
invoke the SetAuthinfo() (per process) asfollows:

a. Includefiles

#include <oodce/Server.H>

#include"appS.H" // Generated by application IDL.
b. Invoke SetAuthinfo

theServer->SetAuthl nfo(

(unsigned_char_t*) princName,// Specifies the Principal Name to use for the Server //
when authenticating RPCs.

rpc_c_authn_dce secret,// DCE secret-key authentication protocol specified.

(void*) keyFile); Il Specifies the 'KeyFile' where server gets 1
password.

Sample #2
Key Management and L ogin Context

Description

Next isthe key management and login context part. The authentication mechanism is based on two
fundamental constructs: principal identities and secret keys. The basic authentication policy issues
therefore have to do with how applications manipul ate these data: how they acquire their principal
identities and how they maintain the security of the secret keys (i.e. In a network environment,
when principalswant to access the resources over the network, how will they provide the encrypted
password, etc.).

When first invoked, a server process uses the login context of the user who invoked it as its
principal identity. This may be sufficient for the application's purposes, however it may need to
assume its own identity.

The server assumes its own identity by retrieving its secret key, which is analogous to a user's
password, and using the key to establish its own login context. The server's key is stored in two
places: by the server in alocal key data file; and by the Security Service in its Registry Service
database. Keysfor serversthat require root accessto file system data or for serversthat need to run
asroot are stored in the system-wide key file which is owned by root. Servers that do not need to
run as root should store their keysin a private file, which the server has access to but nobody else
does. The server'slocal copy is used by the server runtime to decrypt incoming client tickets, and
isalso by server to acquire its own login context.

The server will establish its password and login context as follows:
a. Includefiles

3-77 313-CD-001-002

#include <oodce/Password.H>
#include <oodce/L ogin.H>
#include "EcsFilePassword.H"
b. Establish Server Password
(The EcsFilePassword class inherits from the base class DCEPassword provided by OODCE)
EcsFilePassword passwrd(serverPrincName, serverK eytabFilename);
c. Establish Server Login Context

(DCEStdL oginContext is the default implementation of the DCEL oginContext class defined by
OODCE)

DCEStdL oginContext loginCntxt(& passwrd);

Sample #3
Reference Monitor

Description

The ServerProg (server main program) will create a DCERefMon object. The reference monitor is
used to provide mutual authentication (that is, allow the server to check that the client isas claimed)
and to ensure that the server is willing to meet the client preferences for protection and
authorization.

It can perform basic checks before any application code is entered. In general, these checks are as
follows:

« Is the client program authenticated (i.e., has the client principal established a login

context?)

« Does the protection level requested by the client meet the requirements of the server
program?

+ Does the authorization model requested by the client meet the requirements of the server
program?

Instantiation of DCERefMon object is as below:
a. Includefiles

#include <oodce/RefMon.H>
b. Instantiation of the RefMon Object :

DCEStdRefMon* thisRefMon = new DCEStdRefMon(protectLevel, authnSvc,
authzSvc);

Sample #4
Generating Object UUID

Description

The ServerProg creates a DCEUuid object and initializes it with an object uuid created using
uuidgen command (Refer to DCE manual for details on uuidgen) as follows:

3-78 313-CD-001-002

a. Includefiles
#include <oodce/Uuid.H>
b. Instantiate DCEUuid object
DCEUuidobjectUuid("34c53cfa-9b3d- 11cc-adaf-080009627155");

Sample #5
Initialization of AclManagement

Description

The ServerProg creates DCEA cIMgr object through DefineAcIMgr macro. The DCEAcIMgr class
allows server developers to register a rdacl interface manager object with the global DCEServer
object. There is one instance of DCEAcIMgr per application server, which is referred by a global
reference called acl_manager. Creation of the DCEAcIMgr global object is as below:

a. Includefiles
#include <oodce/A cl StorageM anager.H>
#include <oodce/AciMgr.H>
#include "appS.H" Il Generated by application IDL.
b. Instantiate DCEAcIMgr object
(Note: The DCERefMon object must be instantiated before calling the DefineAclMgr macro.)
DefineAclMgr(* thisRefMon, objectUuid, "database server");

Here the first argument DCERefMon object will enforce the security policy for requests coming
through the rdacl interface. The second parameter, an object uuid will be registered with CDS and
with the endpoint mapper to enable acl_edit tool to contact the right server. The third parameter is
the server name used to identify this instance of a DCEAcIMgr.

Sample #6
Acl Management

Description

The concept of Access Control Lists (ACLS) is used to perform authorization. DCE/ OODCE
provides a set of mechanisms for access controls, which include;

- The authenticated identity and privilege attributes (in the form of credentials) of service
requesters, provided by the RPC runtime to servers.

« ACLswhich servers may associate with objects they control.

+ A default mechanism for determining a service requester's privileges from an ACL and the
requester's credentials.

« Toolsfor administering ACLS.

Create an instance of EcsSecurity object. Through this object invoke functions for performing
CreateAclSchema(..), GetAclSchema(..), CreateAcl(..), CreateAclDatabase(..), etc. asfollows:

a. Includefiles

3-79 313-CD-001-002

#include <oodce/Acl Schema.H>
#include <oodce/AclDb.H>
#include "EcsSecurity.H"
b. Instantiate EcsSecurity object
EcsSecurity * EcsSecurityObj = new EcsSecurity(char * databaseName);
c. Create acls, acl schema and acl database
Through this object can invoke the following functions:
EcsSecurityObj->CreateA cl Schema();

ECSAcIDb * EcsSecurityObj->CreateA cl Database(databaseName, * _Schema, char
* persistentDbName);

EcsSecurityObj->CreateAcl s();

Sample #7
Check on Client's Authorization Privileges

Description

The application server isbrought up and it should be running. The application client when run, will
be requesting some permission to a resource (as indicated earlier a resource can also be an idl
implemented method). The application server will check the ACL associated with the object/
resource and compares it with the client's PAC and makes a decision about the client's requested
access to the resource. If authorized the client will perform the operation else an exception is
thrown by the server on to the client's side.

Invoking the IsAuth function within the appServerObj to check client's authorization privileges:
class EcsAcIDb;
EcsAclDb *_database;
if(_database->1sAuth("EcsA ppObj™)
appMethodX(...);
else
traceobj << "Not Authorized to Perform appMethodX\n";

If the requesting client has permission for appMethodX, IsAuth returns TRUE, otherwise it returns
FALSE.

Application developer creates serverkeytab file using rgy_edit utility (explained in one of the
scenarios below). Also when the server is still up and running, the "acl_edit" client can berunin
order to manipulate ACL s (described in one of the below scenarios).

Sample #3
Using the COTS provided operator interface utility "rgy_edit”, to create server keyfile.

3-80 313-CD-001-002

Description

The application devel oper invoke the rgy_edit program and run the ktadd command providing the
server principal name and the server keytab file name as "ktadd -p SrvPrincName -f
SrvKeyFileName'. The utility prompts for a password "Enter password:" twice. Supply the
password both times. Exit rgy_edit utility. Give the server principal at least READ permission to
this file "SrvKeyFileName" (This is important). Now the server principal is able to establish its
identity during login by getting its password from this keyTabFile. For more information, refer to
DCE Administration Guide.

Following is an example as to how you can runrgy_edit utility for creating a server keytab file:
a. Login to dce as an authenticated user.
b. Running rgy_edit Utility

i. Enter rgy_edit by typing rgy_edit

ii. You get rgy_edit=> prompt.

iii. At the above prompt type the following command to create the srvK eyFile:

ktadd -p srvPrincName -f srvK eyFile

iv. You get Enter Password: prompt to enter password

v. At the above prompt supply the srvPrincPassword.

Vi. You get Re-enter password to verify: prompt for password verification

V. Supply srvPrincPassword again.

vi. At this stage the srvKeyFile is created. Verify if the ssvKeyFileis created
(OPTIONAL) with the following command:

ktlist -f srvKeyFile
vii. If the srvK eyFileis created, you get the following message:
/.../lcelIName/srvPrincName
(indicating the owner of the srvK eyFile created to be srvPrincName.)
else you get the following message:
Unabletoretrieve(s) - Specified key table not found
viii. Exit out of rgy_edit utility, by typing q OR e.
iX. Provide the srvPrincName with at least READ permission to the srvK eyFile.
(IMPORTANT)

NOTE: For more help refer to DCE Administration Guide and also when you arein rgy_edit type
h for help.

Sample #9
Using COTS provided "acl_edit" utility, to manipulate Acls.

3-81 313-CD-001-002

Description

M& O staff invokethe acl_edit program and then identify aresource (the access method associated
with a database server application) to view the ACL associated with the resource. The acl_edit
program calls the database server program to get a printable representation of the ACL associated
with the access operation. The database servers view operation checksif the client can perform the
view operation and returns the ACL associated with the access operation in a printable format.
Acl_edit then displays this on the screen. The M& O staff then invoke the edit operation to edit the
selected ACL. The acl_edit invokesthe read acl operation to get a copy of the acl associated with
the access operation. Upon checking the permissions associated with the read operation, a copy of
the ACL is sent back to the acl_edit. The M&O staff change this ACL and invoke the save
operation. The acl_edit then invokes the replace acl operation of the database server passing this
modified ACL. The replace operation after checking the authorization privileges, replaces the
supplied ACL in memory and may update the contents onto the disk.

Following is an example as to how you can run acl_edit tool to manipulate ACLS:

a. Login to dce as an authenticated user with proper privileges (ex: privilege to modify an object's
ACL)

b. Run the application (which manages the object/s for which you want to run acl_edit for) server
executable.

c. Run acl_edit for object (say) obj1
i.Type the following command:
acl_edit /.:/cdsDir Name/appSrvCdsName/obj 1
ii. You get sec_acl_edit> prompt

iii. View the object's ACL list by typing . Y ou see the ACL similar to the following
example:

#SEC_ACL for /.:/cdsDirName/appSrvCdsName/obj 1
Default cell =/.../edfcell.hitc.com
unauthenticated:r
group:CSS:rtx
user:manand:rwcda
any_other:rt
iv. Modify ACL. Following are some examples.
Example 1 :m user:joerrwta
(adding anew entry for user joe in the above shown example)
Example 2:m group:CSS.rtxa
(modifying the ACL entry for group CSS users)
v. Commit the above modifications by typing co
vi. View the modified ACL list. It will now look as follows:
#SEC_ACL for /.:/cdsDirName/appSrvCdsName/obj 1

3-82 313-CD-001-002

Default cell =/.../edfcell.hitc.com
unauthenticated:r
group:CSS:rtxa
user:manand:rwcda
user:joerrwta
any_other:rt

vii. Exit out of acl_edit by typing e.

NOTE: For more information on acl_edit utility, refer to DCE reference manuals and type h (for
help) when you are in acl_edit.

3.7.5 Object Model

A brief description of al the CSS customized security objectsaswell asthe COTS provided classes
used by the CSS security is provided in the Table 3.7.5-1 below. For more information on any of
the COTS provided objects, please refer to the OODCE reference manuals. CSS customized
security classesare discussed in detail inthe Release A CSM S Communi cations Subsystem Design
Specification for the ECS Project, Section 3.7

Table 3.7.5-1. Security Object Responsibility Matrix (1 of 2)

Class Description

rgy_edit This is command line interface used to create DCE accounts for principals,
create keytab files for non-interactive principal (servers) to maintain its
password, etc.

acl_edit This is command line interface to manipulate (delete, insert, read, write, etc.)
ACLs associated with objects.

DCEObj This is a base class that stores information about the DCE interfaces
implemented by a concrete manager class.

DCEUuid This is the utility class that encapsulates the DCE data type uuid_t.
DCElnterface This is a base class that encapsulates basic functionality for client objects.
DCElnterfaceMgr This is a base class that encapsulates the functionality common to a DCE

interface manager.

ESO This is the Global Server Object. It manipulates manager objects and
interacts with the DCE subsystems.

DCERefMon This class provides an abstraction of a reference monitor that controls the
client object's access to a manager object. By deriving from this abstract base
class, various reference monitors that provide different security policies can
be implemented.

DCEAcIMgr This class registers a rdacl interface manager object with the global
DCEServer(ESO) object. DefineAcIMgr macro is used to construct this class.

3-83 313-CD-001-002

Table 3.7.5-1. Security Object Responsibility Matrix (2 of 2)

Class Description
DCESecld This is a utility class that encapsulates the sec_id_t data type.
DCEAcISchema This is a class defining the ACL permission bits and print strings.
DCESchemaBitset This class represents a set of permissions formatted according to a schema.

Since most uses of ACL will use less than 32 bits of permissions, there is an
efficient encoding of 32-bit ACLs.

EcsAcl This class is used for accessing a DCE access control list. It maintains all the
information about an ACL.

EcsAcIDb This is a class for ACL database. It defines the interface to the ACL database.

EcsModifyableAcl This is a temporary copy of a EcsAcl that can be used for editing directly by

the server or through an application-defined interface.

EcsAcIStorageManag | This is a class that maintains a table of known ACL databases. It manages

er the ACL databases being used by a server, providing registration and search
services for these databases.

EcsFilePassword Provides an interface to the storage and access of password of principal
(usually a server) to help the principal establish it's identity during login
context.

EcsSecurity Provides higher level functionality to authenticate principals accessing

resources. These include create/update/delete ACLs, define permissions
sets, persistence to the ACL database.

3.7.6 Dynamic Model Scenarios

3.7.6.1 Scenario #1

Abstract

* Thisisthe entire security scenario which traces the interactions of the application (which
implements security) client and server objects with the global server object ESO, the
ECSSecurity, ECSFilePassword, etc. The following occursin this scenario:

I nterfaces

Setting client and server authentication information with RPC runtime.

Initialization aspects such as creating instances of different objects and registering
them.

Creation of ACLs, AclSchemaand AclDatabase.
Invoking of IsAuth to check client's Authorization Privileges.

* CSS's ECSSecurity and ECSFilePassword.

3-84 313-CD-001-002

G8-¢

¢00-T00-AO-€TE

ClientProg appClientObjServerProg

Create
| instance of
appClientObj

Register
aﬁp lient
HAuthenticatior>>
info. with
RPC runtime

appServerObj

ESO DCERefMon

ECSSecurity DCEA:

Create instancq
[—and initialize t|

[{To register "rdal

| —Create Clea

Create!

Create glgbal DCEAcIMgr
Cl" interface may

Provides DEERefMon obje

up thread—>

of DCERefMol
e server prefer

object throu

an instance of

[foc

Invo
[—on apg

Allo]

[<—RP(

Create
FappSrvObject™]

Register the
DCERefMon
| object with
theServer
object

Register app!
[——gtobal "theSe

CDS (op|

Set the Server A
Linformation with|

Creates A

—Creates AclD

—Creates AC

Set the Narpe of the
| Server object to use—>

(once per senfer process)

pe}

rvObj with
ver" obje

ional)

uthentication
RPC runti

object
pNC

object by
ager obje

tand DC
h DefineA

ECSSec g

sing DefineAclM
t with global “th

Uuid object to O
CIMgr Macro

ject
)

cISchema
Fmission s

atabase t

s for objeq

to define
Ly >

store ACLs—>

r Macro
erver" 0

CEAcIMgr S

Creates a ndg
and in
and Se

Creates a PCEUuid object

okes AddPrintstr]

Crpates new DCEA

clMgr

w DCEACcISchen

ControlPermissi

[ts/services—>]

mn

Inst:

ough this object
ntiates a DCEMdg

Instantiates a|
| —object and th
object invoke:

type DCE!

Returns a Modifyable Acl

DCEAcIDb
rough thi
CreateAcl

odifyableActy |

Uses the servg

Activate theS
[10 Listen to Cli

appClientObj
htes "theServer'l

e RPC
SrvObject >

s/ Denies
execution

RPC ¢

xecuted and

<<— resit supplied —
1 <

rver object
nt reques

bjecr——=>>

Checks Client"
I~ to execute

Authorizg
the RPC i

tion Privilege
question

ECSAcIDb

ECSACcI

DCEAc! ECS Storage) .. ECSFile
Schema Modﬂ‘yfible Manager acl_edit rgy_edit DCEUuid password
c
object uuid). >>
Creates & Provides
serverieyFile
L (containks Server >
principal|Name &
Passjvord)
a object
ng
bns
cIStorageManaper object and
nvokes CreatelewDatabase | >
difyableAcl objgct
rKeyFile to getjts P ord >

Manigulates
ACLs

Figure 3.7.6-1. Security Event Trace #1

Stimulus

» To create and maintain access control lists(ACLSs) for resources, and with the help of these
ACLs perform security check to find out if a caller is authorized to access specified
resource.

Desired Response

* The database server should have modifiable ACL/s for object/s which consists of ACL
entries that allow a permission set defined by ACL schema, an ACL database to store the
ACL created. Functionality to check caller's privilege to access any desired resource.

Participating Classes
» CSS's ECSSecurity and ECSFilePassword classes.
e COTS provided classes. DCEAcIMgr, DCERefMon, ECSAcl, ECSAcIDDb, etc.

Pre-conditions
» Segmentsimplementing security need to run in the DCE environment.

Post-conditions

* The database client and server authentication information are registered with their RPC
runtime. A modifiable ACL with at least one person granted with the privilege to change
ACL as desired, an ACL schema with default 7 permissions (read, write, execute, test,
insert, delete, acl_control) and a provision to define 25 application specific permissions, an
ACL database which has the latest updated ACL are available to the application server
implementing security. The rdacl interface manager object is registered with theServer
global object to provide the functionality to use M SS provided acl _edit utility to manipul ate
ACLs. A function to check client's authorization privilegesto accessresourcesisavailable.

Scenario description

» For asecure communication, thefirst step an application developer hasto take, isto set the
following authentication preferences for both the client and the server objects:

Authentication Protocol - Authentication protocol can be DCE shared-secret key au-
thentication, where the server gets its password from a keytab file for establishing its
login context, or no authentication, where no tickets are exchanged, or DCE default au-
thentication service (The current default authentication service is DCE shared-secret
key.), or the DCE public-key authentication (which will be supported by DCE 1.2).
This is specified by the server (per process) to indicate the type of authentication it is
OFFERING, and by the client (on a per object basis) to indicate the type of authentica-
tion it DESIRES to have.

Authorization Protocol - Authorization protocol can be either No authorization, where
the server performs no authorization, or Name-based, where the server performs autho-
rization based on the client's principal name, or PAC/DCE based, where the server per-
forms authorization using the client's DCE Privilege Attribute Certificate (PAC) sent to
the server with each RPC made with binding. The type of authorization protocol is
specified by the client to indicate the authorization type DESIRED by the client.

3-86 313-CD-001-002

Protection Level - Protection level specifies the protection level for RPCs made using
binding. It determines the degree to which authenticated communications between the
client and server are protected by the authentication service specified by authentication
protocol. The protection level when selected to be "packet_integrity” will ensure data
integrity (i.e. ensures that data is not modified during transit) by adding encrypted
checksums to the data. Also specifying the protection level as "packet_privacy” will
ensure the privacy of data through the use of secret-key encryption. However in trying
to achieve data integrity/privacy there is a tradeoff. i.e. more restrictive the protection
level, the greater the negative impact on performance.

i. The appClientObj (per object basis) must invoke the SetAuthinfo() APl asfollows:
a. Includefiles
#include"appC.H" // Generated by application IDL.
b. Construct an instance of the Client Class
appClientObj appClOby;
c. Invoke the SetAuthinfo AP
appClObj.SetAuthlnfo(
(unsigned_char_t*) princName,// Name to identify server principal.

rpc_c _protect_level pkt_integ,// Specifies packet level protection whichisthe// highest
level guaranteed to be present in the RPC I runtime.

rpc_c_authn_dce secret, // Specifies DCE secret-key authentication protocol.

(rpc_auth_identity _handle t)NULL, // NULL specified to use the default security login //
context for the current address space.

rpc_c_authz dce); // PAC/DCE based authorization protocol specified.

ii. The ESO (DCEServer object 'theServer', aready defined in the DCEServer.C file) should
invoke the SetAuthinfo() as follows:

a. Includefiles

#include <oodce/Server.H>

#include"appS.H" // Generated by application IDL.
b. Invoke SetAuthinfo

theServer->SetAuthlnfo(

(unsigned_char_t*) princName,// Specifies the Principal Name to use for the Server //
when authenticating RPCs.

rpc_c_authn_dce secret,// DCE secret-key authentication protocol specified.
(void*) keyFile); Il Specifies the 'KeyFile' where server gets 1
password.

2. Next is the Key management and login context part. The authentication mechanism is based on
two fundamental constructs: principal identities and secret keys. The basic authentication policy
issues therefore have to do with how applications manipulate these data: how they acquire their

3-87 313-CD-001-002

principal identities and how they maintain the security of the secret keys (i.e. In a network
environment, when principal s want to access the resources over the network, how will they provide
the encrypted password, etc.).

When first invoked, a server process uses the login context of the user who invoked it as its
principal identity. This may be sufficient for the application's purposes, however it may need to
assume its own identity.

The server assumes its own identity by retrieving its secret key, which is analogous to a user's
password, and using the key to establish its own login context. The server's key is stored in two
places: by the server in alocal key data file; and by the Security Service in its Registry Service
database. Keysfor serversthat require root accessto file system data or for serversthat need to run
asroot are stored in the system-wide key file which is owned by root. Servers that do not need to
run as root should store their keysin a private file, which the server has access to but nobody else
does. The server'slocal copy is used by the server runtime to decrypt incoming client tickets, and
isalso by server to acquire its own login context.

The server will establish its password and login context as follows:
a. Includefiles
#include <oodce/Password.H>
#include <oodce/Login.H>
#include "ECSFilePassword.H"
b. Establish Server Password
(The ECSFilePassword class inherits from the base class DCEPassword provided by OODCE)
ECSFilePassword passwrd(serverPrincName, serverK eytabFilename);
c. Establish Server Login Context

(DCEStdL oginContext is the default implementation of the DCEL oginContext class defined by
OODCE)

DCEStdLoginContext 1oginCntxt(& passwrd);

3. The ServerProg (server main program) will create a DCERefMon object. The reference monitor
is used to provide mutual authentication (that is, allow the server to check that the client is as
claimed) and to ensure that the server is willing to meet the client preferences for protection and
authorization.

It can perform basic checks before any application code is entered. In general, these checks are as
follows:

. Is the client program authenticated (i.e., has the client principal established a login
context?)

. Does the protection level requested by the client meet the requirements of the server
program?

. Does the authorization model requested by the client meet the requirements of the server
program?

Instantiation of DCERefMon object is as below:

3-88 313-CD-001-002

a. Includefiles
#include <oodce/RefMon.H>
b. Instantiation of the RefMon Object :

DCEStdRefMon* thisRefMon = new DCEStdRefM on(protectL evel, authnSvc,
authzSvc);

4. The ServerProg creates a DCEUuid object and initializes it with an object uuid created using
uuidgen command (Refer to DCE manual for details on uuidgen) as follows:

a. Includefiles

#include <oodce/Uuid.H>
b. Instantiate DCEUuid object

DCEUuidobjectUuid("34c53cfa-9b3d- 11cc-adaf-080009627155");
5. Initialization of AclManagement :

The ServerProg creates DCEA cIMgr object through DefineAcIMgr macro. The DCEAcIMgr class
allows server developers to register a rdacl interface manager object with the global DCEServer
object. There is one instance of DCEAcIMgr per application server, which is referred by a global
reference called acl_manager. Creation of the DCEAcIMgr global object is as below:

a. Includefiles
#include <oodce/Acl StorageM anager . H>
#include <oodce/AclMgr.H>
#include "appS.H" /I Generated by application IDL.
b. Instantiate DCEAcIMgr object
(Note: The DCERefMon object must be instantiated before calling the DefineAcIMgr macro.)
DefineAcIMgr(*thisRefMon, objectUuid, "database server");

Here the first argument DCERefMon object will enforce the security policy for requests coming
through the rdacl interface. The second parameter, an object uuid will be registered with CDS and
with the endpoint mapper to enable acl_edit tool to contact the right server. The third parameter is
the server name used to identify this instance of a DCEAcIMagr.

6. Acl Management

The concept of Access Control Lists (ACLS) is used to perform authorization. DCE/ OODCE
provides a set of mechanisms for access controls, which include;

. The authenticated identity and privilege attributes (in the form of credentials) of service
requesters, provided by the RPC runtime to servers.

. ACLswhich servers may associate with objects they control.

. A default mechanism for determining a service requester's privileges from an ACL and the
requester's credentials.

. Tools for administering ACLSs.

Create an instance of ECSSecurity object. Through this object invoke functions for performing
CreateAclSchema(..), GetAclSchema(..), CreateAcl(..), CreateAclDatabase(..), etc. asfollows:

3-89 313-CD-001-002

a. Includefiles
#include <oodce/Acl Schema.H>
#include <oodce/AclDb.H>
#include "ECSSecurity.H"
b. Instantiate ECSSecurity object
ECSSecurity * ecsSecurityObj = new ECSSecurity(char * databaseName);
c. Create acls, aclschema and acl database
Through this object can invoke the following functions:
ecsSecurityObj->CreateA cl Schema();
DCEA clSchema * ecsSecurity-> GetSchema();

ECSAcIDb * ecsSecurityObj->CreateDatabase(databaseName, * _Schema, char
* persistentDbName);

d. The application server is brought up and it should be running. The application client when run,
will be requesting some permission to aresource (as indicated earlier aresource can aso beanidl
implemented method). The application server will check the ACL associated with the object/
resource and compares it with the client's PAC and makes a decision about the client's requested
access to the resource. If authorized the client will perform the operation else an exception is
thrown by the server on to the client's side.

Invoking the IsAuth function within the appServerObj to check client's authorization privileges:
class ECSACcIDDb;
ECSAcIDb * _database;
if(_database->1sAuth("ecsappobj”)
AppMethodX(...);
else
traceobj << "Not Authorized to Perform AppMethodX\n";

If the requesting client has permission for AppMethodX, 1sAuth returns TRUE, otherwiseit returns
FALSE.

Application developer creates serverkeytab file using rgy_edit utility (explained in one of the
scenarios below). Also when the server is still up and running, the "acl_edit" client can berunin
order to manipulate ACL s (described in one of the below scenarios).

3-90 313-CD-001-002

application

Developer rgy_edit

Run "rgy_edit" (type "rgy_edit") S>>

<<—Gives "rgy_edit" prompt (the prompt is "rgy_edit=>"}——

At the prompt type the command
"ktadd -p SrvPrincName -f SrvKeyFileName" >

< Prompts for a password
(the prompt is "Enter password:")

Supply password >

Prompts for password verification
< (the prompt is "Re-enter password to verify:")

Verify if the SrvKeyFile is created (OPTIONAL) S
(the command is "ktlist -f SrvKeyFileName")

If SrvKeyFile is created, gives the message:
"/...ICellName/SrvPrincName" (Indicating the owner
< of the SrvKeyFile) Else get the message:
"Unable to retrieve key(s) - Specified key table not found.

Exit out of "rgy_edit" utility >
(type "q" or "e" for exit)

Provide Server Principal with READ permission S
to the file "SrvKeyFile" (IMPORTANT)

Generation of Server KeyTab File
through "rgy_edit" utility

Figure 3.7.6-2. Security Event Trace #2

3-91 313-CD-001-002

3.7.6.2 Scenario #2

Abstract

» This scenario traces the interactions of the application developer with the DCE/OODCE
provided "rgy_edit" utility, to create the server keytab file to store the server principal’s
(principal under who's identity the server isto run) password.

I nterfaces
* COTSprovided rgy_edit application.

Stimulus

» Application developer (dce authenticated user) invoke the rgy_edit function to create the
server keytab file.

Desired Response

* The server keytabfile should be created and available for use by the database server to get
its password to establish it's identity during login context.

Participating Classes
e rgy_edit

Pre-conditions

» Theapplication developer should be a DCE authenticated user in order to create the keytab
file through "rgy_edit".

Post-conditions

» Then serverKeyTabFile is available for use by the database server to establish its identity
during login context..

Scenario description

* The application developer invoke the rgy_edit program and run the ktadd command
providing the server principal name and the server keytab file name as "ktadd -p
SrvPrincName -f SrvKeyFileName". The utility prompts for a password "Enter password:"
twice. Supply the password both times. Exit rgy_edit utility. Give the server principal at
least READ permission to thisfile"SrvKeyFileName" (Thisisimportant). Now the server
principal is able to establish its identity during login by getting its password from this
keyTabFile. For more information, please refer to DCE Administration Guide.

3-92 313-CD-001-002

M&O acl_edit appServer

Run application Server executable >

. Run "acl_edit" for object "OBJ1" S
(type "acl_edit /.:/CdsDirName/appSrvCdsName/OBJ1")

<<——Gives a prompt ("sec_acl_edit>" prompt}——

View the object's acl list (type "I" for list}——>>

Modify Acl
(Examplel "m user:manand:rwx"
(Example2 "m group:CSS:rx")

——Commit the changes to the Acl (type "co" for commit}—=>

——View the Modified Acl list (type "I" for list - OPTIONAL)}—>>

Exit out of acl_edit (type "e" for exit——>>

Running "acl_edit" utility to Modify Acls

Figure 3.7.6.-3. Security Event Trace #3

3.7.6.3 Scenario #3

Abstract

* This scenario traces the interactions of M&O staff modifying the contents of an ACL
associated with an access operation of a database server through an MSS-provided
interface.

I nterfaces
 MSSsacl_edit application.

3-93 313-CD-001-002

Stimulus
* M&O staff invoke the acl_edit function to edit the ACL associated with given resource.

Desired Response

* The server should use the modified ACL in any future authorization checks performed in
deciding whether a given client can access the resource associated with the ACL.

Participating Classes
o acl_edit

Pre-conditions

* The database server is running and has implemented the rdacl calls associated with the
database server.

Post-conditions
» Thenewly modified ACL will be attached to the resource.

Scenario description

» M&O staff invoke the acl_edit program and then identify a resource (the access method
associated with a database server application) to view the ACL associated with the
resource. The acl_edit program calls the database server program to get a printable
representation of the ACL associated with the access operation. The database servers view
operation checks if the client can perform the view operation and returns the ACL
associated with the access operation in a printable format. Acl_edit then displays this on
the screen. The M& O staff then invoke the edit operation to edit the selected ACL. The
acl_edit invokes the read acl operation to get a copy of the acl associated with the access
operation. Upon checking the permissions associated with the read operation, a copy of the
ACL is sent back to the acl_edit. The M&O staff change this ACL and invoke the save
operation. The acl_edit then invokes the replace acl operation of the database server
passing this modified ACL. The replace operation after checking the authorization
privileges, replaces the supplied ACL in memory and may update the contents onto the
disk.

3.7.7 Implementation

The OODCE COTs product will be used for the security functionalities defined in this section.
However, CSS will provide the following custom software:

+ ECSSecurity

- Provides a layer encapsulating the underlying security classes such as ECSAdI,
ECSACcIDD, ECSModifyableAcl, ECSAcl StorageM anager, DCEAcIMgr,
DCEAclSchema and DCESecld.

- When acls are updated and the application server goes down for some reason, when it
is brought up again, the acls available are the initial acls and not the updated acls. In
order to have the latest updated acls available for use by the application server every

3-94 313-CD-001-002

time it is brought up, this persistent storage is provided. Everytime acl is updated it is
written into persistent storage file and whenever application server is brought up, the
updated acls are written from the persistent storage file back into the memory for use
by application server. For this functionality it is required to implement the methods of
the following classes. ECSAcl, ECSModifyableAcl, ECSAclStorageManager and
ECSAcIDb.

« ECSPassword

This inherits from the COTs provided class DCEPassword. During login context, in
case of interactive principals, password is supplied on command line. The
DCEPassword class takes a keyfile name as one of the arguments and provides non-
interactive principals with their passwords to be stored in the keyfile, so that non-
interactive principals (servers) can establish their identity without doing alogin.

3-95 313-CD-001-002

This page intentionally left blank.

3-96 313-CD-001-002

4. MSS Services

4.1 MSS Services

4.1.1 MSS Overview

The M SS provides ECS Maintenance and Operations (M& O) Staff with the capability to manage
the ECS enterprise, i.e., to perform network and system management services for al ECS
resources, including all FOS, SDPS, and CSMS components. The MSS is composed of a
combination of Commercia Off The Shelf (COTS) and custom management applications to
provide a highly automated means for monitoring and managing the various ECS resources. This
section describes the use of MSS to manage ECS resources, particularly FOS resources, located at
the EOS Operations Center (EOC).

The Management Subsystem (MSS) provides enterprise management (network and system
management) for all ECS resources: commercial hardware (including computers, peripherals, and
network routing devices), commercial software, and custom applications. Consistent with current
trends in industry, the MSS manages both EOC network resources and EOC host/application
resources. Additionally MSS aso supports many requirements allocated to FOS for management
data collection and analysi g/distribution.

The MSS allocates services to both the system-wide and local levels. With few exceptions, the
management services are fully decentralized, no single point of failure exists which would
preclude user access. In principle every service is distributed unless there is an overriding reason
for it to be centralized. MSS has two key specializations: Enterprise Monitor and Coordination
Services and Local System Management Services. The distribution of these services provides
maximum flexibility and policy neutrality in the design and implementation of MSS services.

The MSS is composed of a variety of management applications providing services such as fault,
performance, security, and accountability management for EOC networks, hosts, as well as FOS
applications. The management applicationsreside on an M SS Server at the EOC. The management
information for remote objects needs to be conveyed to the management applications through the
Management Agent Service which primarily resides on remote hosts.

4.1.2 MSS Context

As shown in the FOS-MSS Context Diagram (Figure 4.1-1), the Management Agent Service
provides the primary interface point between FOS subsystems and the MSS. Thisinterfaceis used
to communicate management requests and responses between management applications and
managed resources. Fault, performance, accountability, and security management services are
provided through this mechanism for all managed resources. There are other MSS services at the
EOC, such as configuration management, trouble ticketing, and some aspects of security and
accountability management. These other services, however, do not directly interface with FOS
applications, although they may involve interfaces with FOS operators. A further description of
these other servicesis provided in Sections 4.5 and 4.6.

4-1 313-CD-001-002

Configuration
Management

Fault
Management

Data Server

Performance
Management

Real Time

Security
Server

Management
Management Management
Agent Framework
Services Accountability
Management

Data Storage
Unit

Trouble
Ticketing

User Stations

Physical
Configuration
Management

vhesaa(Ground Event
Data Acces: Planning
—

i

Figure 4.1-1. FOS-MSS Context Diagram

Since Management Agent Services form the basis for FOS systems management, a brief, high-
level description of the agent capabilities are described here. A detailed description of some of the
metrics used and their implementations are provided in the Management Services and Performance
sections (4.2 and 4.3, respectively).

The MSS Management Agent Service provides the following capabilities for the management of
FOS resources at the EOC:

¢ Can manage network devices, host systems, and FOS applications.

Instrumentation APIs provided by MSS, are used to manage ECS-developed FOS
applications. FOS application developers can determine the performance metrics that
should be monitored, instrument their applications appropriately to alow the agent to
monitor that metric, and identify suggested metric thresholds which can be used to detect
degraded application performance.

Proxy agent(s) are used to manage non-ECS developed FOS applications (i.e., applications for
which FOS developers cannot instrument their applications with the MSS Instrumentation API).
Proxy agentsare generally supplied by the resource provider in the case of COTS applications. The
front-end of the proxy agent uses the instrumentation API provided by MSS. The back-end of the
proxy agent is the interface unique to each managed application.

4-2 313-CD-001-002

* Definesthe managed object model to represent the management characteristics, or metrics,
of ECS applications. The metrics are defined in a Management Information Base (MIB).

MSS manages objects on each managed host using metrics defined in industry standard
MIBs. In addition, MSS has defined a managed object model for ECS applications in
standard MIB format. The Management Agent Service implements this application MIB,
which can contain application-specific metrics, such as the length of time to complete an
operation. Information contained in the MIB is composed of severa different types of
attributes: configuration, performance, fault, dynamic, static, and traps.

¢ Sends ECS management event notificationg/traps to the MSS Management Framework.

Event handling is provided by Management Agent Service to satisfy the need to dispatch
events for orderly and prompt resolution to fix problems. All events are logged locally on
each host. The agent can also be configured to forward certain events immediately to the
management server, which can then perform a predefined action in response to the detected
event. The use of the agent in collecting management eventsis further described in section
4.2.

* Retrieves ECS managed object metrics in response to requests from M SS applications.

Performance data is a'so logged by Management Agent Services, with measured values
compared against configurable thresholds. The agent can then generate event notifications
of its own whenever the defined thresholds are exceeded. The use of the agent in collecting
performance datais further explained in Section 4.3.

* Performslocal polling on hosts to monitor the state of managed ECS resources.

In order to reduce network traffic, the agent is capable of monitoring ECS resources
remotely. The agent logs performance data, performs threshold checks, generates
management events when threshol ds are exceeded, |ogs management events notifications,
and selectively forwards high priority management events to the Management Framework
in real time. The logs are then transferred to the management server during periods of low
traffic for further analysis by management applications.

* Receives ECS management Set requests from the Management Framework.

The management agent provides the capability to send commands to managed applications
through the use of set commands. This capability is further described in the Management
Services section (Section 4.2).

MSS establishes an ECS file system on each managed host to store configuration-related files for
applications. The root of this ECSfile system is ECS. It has three subdirectories, FOS, SDPS, and
CSMS. Each of these can be further subdivided into subdirectories. Every ECS application
package should have its own subdirectory.

The full path name of the executable file needs to be stored in the application’s directory. A file
with suffix .inp is used for the file containing the required input arguments. The .pwd isused as a
suffix for the keytab file. A .cfg fileis created at installation time to contain configuration-related
information. When an application starts, a.insfileiscreated for that particular application instance.
It will then be deleted when the application terminates.

4-3 313-CD-001-002

4.1.1.1 Management Views

At each ECSinstallation, including the EOC, M& O Staff autonomously providelocal management
services associated with its ECS resources and, hence, are provided alocal management view. At
the System Monitoring and Coordination Center (SMC), M& O Staff provide enterprise monitoring
and coordination services associated with the all ECS installations and are provided a system-wide
management view. Extensive configurability is provided by the M SS applications to enable these
viewsto be shared or controlled as necessary based on ECS management policy. Beside providing
these viewsto M& O Staff for monitoring and control purposes, the management services make use
of legacy CSS services such as electronic mail and bulletin board for coordination. The services
provided by CSMS at the SMC, located at Goddard Space Flight Center (GSFC), are collectively
referred to as Enterprise Monitoring and Coordination (EMC). In the same context, services
provided by CSMS at the EOC are collectively referred to as Local System Management (LSM).

ECS management at the EOC consists of two different views:. the FOS service level view and the
MSS site level management (LSM) view. In addition, the ECSlevel view at the SM C encompasses
the management of the entire system, including the EOC.

Asshown in Figure 4.1-2, M SS receives both FOS service-level data (such as errors, transactions,
FOS service-related performance data, and other FOS-unique data) and resource data (such as
resource faults, performance data, security events, and accountability events) from managed
resources at the EOC. This data is gathered on each managed object at the EOC via the
management agent services. MSS applications then correlate, process, and make available the
gathered management data.

Resources

Services

(e |
A 4

Real Time Server ’
A
Pata Storage Unit ’

Fault,
Performance,
Events,
Resource Data

Errors,

Transactions, MSS

Performance,
Service Unique Data .
Site-Level

Management

S é;
Data

Systems Administrator /Operator
Operations Supervisor
Performance Analyst

Resource Manager
Resource Planner

Service-Level
Management

=

FOS Operators

ECS Level
Management

H Configuration Management S/W Maintainer / Programmer

Administrator S/L Engineer Card Activity
Sustaining Engineer Controller

H/W Maintenance Technician

Property Manager

Figure 4.1-2. Management Data Flows

4-4 313-CD-001-002

Table4.1-1 provides an overview of the types of management information available from the EOC
to the appropriate operators (note that the SMC operator is located separately from the EOC).

Table 4.1-1. EOC Management Data Types

Operator Management Data Purpose of Data

FOS Operator |FOS Service-Level Data | Provides information on the performance of FOS
services.

FOS Operator |FOS Resource Data Provides information on the status and performance of
FOS resources at the EOC.

EOC MSS EOC Resource Data Provides information on the status and performance of

Operator all ECS resources at the EOC.

SMC Operator |EOC Summary Provides a summarized view of the status and

Resource Data performance of all ECS resources at the EOC.

41.1.1.1 FOS Service Level View

The FOS service level view provides the FOS operator with the management information
necessary to determine the overall performance of FOS systems. At the FOS service level view,
FOS operators are responsible for:

« Monitoring the FOS service level performance
« Managing FOS functions
« Managing FOS tasks and processes

4.1.1.1.2 LSM View

The LSM view provides the MSS M& O operator(s) with management information on the status
and performance of all managed resources at the EOC. At the LSM view, M&O operators are
responsible for:

« Monitoring and management of EOC site resources

« Performing system administration functions

« Maintaining ECS user (including operator) information

- Maintaining the site software and hardware configuration

« Coordinating system maintenance activities

« Recording and tracking problem reports through resolution
« Providing summary management data to the SMC

41.1.1.3 SMC View

Although located remotely from the EOC, the SMC operator still has a variety of responsibilities
associated with the management of EOC resources. At the SMC, M& O operators with the SMC
view are responsible for:

« Administering ECS-wide planning and policy
« Monitoring "Rolled-Up" site level performance

4-5 313-CD-001-002

« Monitoring the Wide Area Network
« Exchanging information with external systems
« Analyzing fault and performance trends

4.1.2 MSS Hardware

The M SS hardware at the EOC consists of the following components:
« Loca System Management Servers
* Management Workstations
* Printers

4.1.2.1 Connectivity

The EOC hardware connectivity is depicted in Figure 4.1-3. The EOC LSM resides on a separate
FDDI ring, with connectivity to FOS systems and the rest of the site provided by aredundant FDDI
switch/router. The MSS Local Management Server is equipped with aDAS (dual -attached station)
card that is connected to two FDDI concentrators, providing redundancy in the event of a
concentrator failure. The M SS monitoring workstations are equipped with an SAS (single-attached
station) interface card, connected to a single FDDI concentrator.

Data Storage
Unit

Real Time Management
Server Workstation

Management

Data Server Server

User Stations

Figure 4.1-3. EOC Hardware Connectivity

4-6 313-CD-001-002

4.1.2.2 MSS Hardware Components

The MSS monitoring / management server isthe primary server for MSS applications and data. It
is cross-strapped to the CSS communications server to provide for failover (warm standby)
capability, and is populated with management applications (e.g., HP OpenView, ClearCase),
common management services (e.g., Sybase, word-processing, and spreadsheet packages), and
management agent services software as well as CSS client software.

The management workstation configurations are networked workstations that support all aspects
of enterprise management between the M& O staff and the LSM. The management workstations
are populated with the CSS client, the M SS management agent services, and user-sel ected subsets
of the enterprise monitoring configuration software and data.

4.1.2.3 Failover and Recovery strategy

Analysis of failover strategies supports the integration of the CSS and MSS servers to serve as
warm standby to each other, cross-strapped to RAID devices for critical data access by either
server. MSSlogical server functions are be configured but inactive on the CSS server. In the event
of afailure of either server, the second RAID can be mounted for use by the backup server. All data
isreplicated, and is aso routinely safestored in the ECS data server archive.

The LSM is designed to continue to function in the event of an EMC failure, and agents at hosts
will continue to monitor managed objects in the event of an LSM failure. Dual attached FDDI
within thelocal EOC LAN designsfor critical RMA links.

Specific calculations of reliability and availability of MSS components are provided in 516-CD-
001-003, Reliability Predictions for the ECS Project (August 1995), and 518-CD-001-003,
Maintainability Predictions for the ECS Project (August 1995).

4.2 Management Service

4.2.1 Management Service Description

MSS provides a set of management services for use by other ECS subsystems. The following
management services are provided by MSS and utilized by the FOS:

« Event logging and real-time notification

This service provides the capability for ECS applications to log events that generate
management data to a local history log file. Further, based on the type and the severity of
the events, the service provides the capability to send real-time notifications to the LSM.

« ECS Resource Monitoring

MSS Lifecycle services provide the capability for MSS to effect the discovery
(registration), startup and shutdown of (long-lived or permanent) ECS applications. A
separate service provides the capabilty for ECS subsystems to register and cancel requests
for the monitoring of specific transient processes, with the capability to specify the identity
of an interested ECS application to receive a notification in case the specified transient
process fails between the initial registration and the cancellation. Together these services
monitor EOC software applications for changes in status.

« Sending of notifications from MSS management applications to other ECS applications

4-7 313-CD-001-002

This service provides the MSS management applications the capability to send
notifications to ECS applications.

« Instrumentation of ECS applications

This service provides M SS management applications the capability to retrieve application-specific
data (metrics) from ECS applications.

These management services are provided by MSS by means of a set of public classes made
available to ECS subsystems. These public classes provide the interface for ECS subsystems to
MSS and vice versa. These public classes, their attributes and their methods are described in
Section 4.2.3 of this document.

4.2.2 Management Service Context

The Management Service is used by the FOS to exchange management event data with the
Management Subsystem. Management events that are detected by the FOS software are sent via
the Management Service and incorporated into fault, performance, security and accountability
reportsthat MSS providesto the M& O Staff viathe LSM. Network, system and operational events
that are detected unintrusively by the MSS are sent via the Management Agent to the FOS.
Management Event information reported by MSS is formatted by the ROS Event Handler for
distribution to EOC User Station displays at the option of the user. The FOS Event Handler also
makes sel ect management event information available to FOS subsystems. FOS requirements for
the MSS Management Service are provided in Section 4.2.5 of this document.

4.2.2.1 Management Events Reported to MSS

In order for fault performance security, and accountability reports to be prepared and forwarded to
the LSM, management events must be detected by the ECS-developed FOS software and
forwarded to the Management agent. The MSS Instrumentation service is used by FOS
applications to forward application specific information that are of interest to the Management
Agent. Oncetheinstrumentation isin place FOS application software information can be gathered
and metrics can be calculated automatically by the MSS service. The events collected by the
Management agent are then manipulated into reports.

A representative list of faults and events reported by the various ECS managed objects at the EOC
isprovided in Table 4.2-1.

4-8 313-CD-001-002

Table 4.2-1. Faults and Events Reported by ECS Managed Objects

Managed Object

Fault/Event

Standard SNMP Traps

Cold Startup

Warm Startup

Link Up

Link Down
Authentication Failure

Network Device

Node Added
Node Deleted
Node Down
Node Marginal
Node Unknown
Node Up

Interface Card

Interface Added
Interface Deleted
Interface Disconnected
Interface Down
Interface Marginal
Interface Unknown
Interface Up

Interface Unmanaged

Disk drive

Disk drive on-line

Disk drive off-line

Disk drive warning

Disk drive unknown state

Printer

Printer printing
Printer idle
Printer warming

Tape drive

Tape drive on-line
Tape drive off-line

ECS Application

Application failed
Application missing
Application startup
Application shutdown
Application discovered

ECS Database

Database up
Database down

4.2.2.2 Management Events Reported to FOS

Network, system and operational eventsthat are detected unintrusively by the MSS are sent viathe
Management Agent to the FOS. The FOS has two uses for this information. All of the
unformatted event information received from MSS is formatted by the FOS Event Handler in for

4-9 313-CD-001-002

distribution to EOC User Stationsfor display at the option of the user. Selected, unformatted event
information is used by FOS subsystems to update ground telemetry information that supplies
current statuses of hardware, software and network components to EOC User Station displays.

The EOC hardware components that are monitored on behalf of the FOS are provided in Appendix
A: MSS Managed Hardware Objects.

The EOC software components monitored on behalf of the FOS include permanent as well a
transient software processes. The FOS software processes that require management by this service
arelisted in Appendix B: MSS Managed Application (Software) Objects.

4.2.3 Management Service API

The management services provided by MSS are made available to ECS subsystems through a set
of public classes. These public classes provide the interface for ECS subsystemsto MSS and vice
versa. These public classes, their attributes and their methods are covered in this section. They
are however, described in more detail in the Release A M SS Design Specification (305-CD-013-
001).

The following classes are provided as external interfaces to the management subagent for ECS
application programmers.

EcAgManager
MsAgMonitor
EcAgEvent

Each of these classes are defined within this document, along with usage information and example
code.

CLASS: EcAgManager

DESCRIPTION:The EcAgManager class provides mapping facilities between the ECS
application and the management agent. Callback registration functions are provided by the class
for the retrieval of application specific metrics (variable values). These need to be used by
programmers in order to register the callbacks for this functionality. Likewise, application
programmers may register a callback function for the shutdown event.

USAGE:

EcAgManager providesthe application programmer onefunction for usein their application. They
are asfollows:

RegisterCallBack (int ActionType, MssCallBackFuncPtr * FuncPtr);

This function is used by the application programmer to register callback functions. The first
argumentsisthe action in which the callback should be executed. The second function is a pointer
to the actual callback function

The following are legal action types:
GET_PERFORMANCE
GET_FAULT
GET_CONFIG
SHUTDOWN

4-10 313-CD-001-002

The callback function must be of the following type
typedef int (*MssCallBackFuncPtr)(void *pValue, int nindex);

The application programmer should take note that their callback function may be called at any time
after the registration of the callback and before the shutdown callback is issued. Since
EcAgManager is running in a separate thread of execution, the programmer must also take any
steps within the callback function to protect any critical code sections (via semaphores, file locks,

o)
Different data structures are passed in the pValue attribute depending on the action type. These
structures are the following:

GET_PERFORMANCE typedef struct {
char szPerfType[17];
int nPerfValue;
int nPerfThreshold
} CBD_PERFORMANCE;
GET_FAULT typedef struct {
char szFaultType[17];
int nFaultValue,
} CBD_FAULT,
GET_CONFIG typedef struct {
char szCfgParam [17];
char szCfgvaue[17];
} CBD_CONFIG;
SHUTDOWN int NNow;

EXAMPLE CODE:This example provides sample callbacks (shutdown, performance) and their
registration with the ECAgManager class.

int MyShutdownCallback (void *pValue; int nindex)
{
int NNow = (int)*pValue;
if (NNow) {
printf ("Shutting down immediatly\n");
exit (0);
}
else{
printf ("Shutting down later\n");

4-11 313-CD-001-002

bShutdownL ater = TRUE;

}
return O;

}
int MyPerformanceGetCallback (void *pValue; int nindex)
{
CBD_PERFORMANCE* pPerfData= (CBD_PERFORMANCE*) pValue;
int nReturnCode = 0;
/I critical code section, so use semaphore locking
SEMAPHORE::Lock (MGMTLOCK);
switch (nindex) {
case NUMBER_WIDGETS PROCESSED_INDEX:
pValue->nValue = nNumberOfWidgetsProcessed,;
break;
case NUMBER_WIDGETS CACHED:
pValue->nValue = nNumberOfWidgetsCached;

break;
default:
nReturnCode = 1; // no more performance attributes, so return 1
}
SEMAPHORE::UnLock (MGMTLOCK);
return nReturnCode;
}
int main (void)
{

EcAgManager MsManager;
MsManager.RegisterCallback (GET_PERFORMANCE, MyPerformanceGetCallback);
MsManager.RegisterCallback (SHUTDOWN, MyShutdownCallback);
// normal application code goes here
return O;
}
CLASS: MsAgMonitor

DESCRIPTION:The MsAgMonitor class provides application programmers the ability to start
and stop the management agents monitoring of a specified process (transient processes included).
Both DCE and non-DCE based application may be monitored in this fashion. Between the
StartMonitor request and the StopMonitor request, in the case of afault, anotification is sent to the

4-12 313-CD-001-002

specified recipient.
USAGE:

MsAgMonitor provides the application programmer two functions for use in their application.
They are asfollows:

StartMonitor (int nPID, char * szDestination, char *arg3);
StartMonitor (char *argl, char *szUUID, char *arg3);

The function start monitor has been overloaded to account for both DCE and non-DCE
applications. The first instance of the method will instruct the management agent to monitor an
application with the provided process ID. The second instance of the method instructs the
management agent to monitor a DCE application with the provided UUID.

EXAMPLE CODE:
int MyClass.:MySpawningOf AProcess ()
{
int nPID;
/I start a child application to produce widgets
nPID = SpawnWidgetCreator ();
/I instruct the management agent to monitor the child process
MsMonitor.StartMonitor (nPID, NULL, NULL);
}
CLASS: EcAgEvent

DESCRIPTION:The EcAgEvent class provides application programmers the ability to send
application events to the management subagent.

USAGE:

EcAgEvent provides the application programmer one functionsfor usein their application. Itisas
follows:

LogEvent (char *szParentI D, char *szMyld, int nEventType, int nSeverity, int nDisposition, char
*szMessage)
The application programmer calls this function each time a reportable event has occurred.

nEventType specifies the event type. nSeverity specifies the severity of the even. nDisposition
specifies the disposition of the event. szMessage provides a brief description of the event.

EXAMPLE CODE:
MyClass::MyErrorHasOccured ()
{
/[an error has occured, so report it to the management agent
myld = EcEvent.GetMyI d;
EcEvent.LogEvent (parentld, myld, FAULT, WARNING, NULL,
"cannot find widget initiaization file");

4-13 313-CD-001-002

4.2.4 Management Service Dynamic Model
4.2.4.1 Get MIB Value Scenario

Abstract
* Thisscenario will demonstrate how an M SS management application checks the condition
of amanaged resource. That information can be obtained from a variable defined in ECS
application MIB.
I nterfaces
» Management Framework in MSS Fault Management

Stimulus
* An MSS management application inquires the value of aMIB variable concerning an ECS
application running on a remote host.
Participating Classes
 EcAgAgent
* MsAgSubAgent
 EcAgManager
 ECSapplication

Pre-conditions
* The SNMP agent, ECS subagent, and the ECS application are all up and running.

* The SNMP agent on the host is up and running. It listens to port 161 to wait for incoming
SNMP requests.

* The ECS subagent is functioning. It has established connections with the SNMP agent on
the same host and waiits for incoming requests through the agent-subagent protocol.

* The ECS application is instrumented with the M SS-provided class library which includes
the server part of the ECAgManager. This application isalso up and running normally. The
instrumented ECAgManager object has been instantiated.

Post-conditions

 The SNMP agent is still listening to the port 161 for incoming SNMP requests.

» The ECS subagent continuously await for incoming requests from the SNMP agent.

* TheECS application is running to perform its own functions.

Scenario description

A MSS management application needs to check the condition of a managed resource. That can be
reflected by the value of avariable defined in ECS application MIB.

The management application issues an SNMP request to retrieve the value of that MIB variable.
Therequest is passed from M SS Server to the SNMP agent on a particular remote host. The SNMP

4-14 313-CD-001-002

agent first does the authentication and authorization validations. If the request is allowed to access
that MIB variable, then it checksthe MIB registration tree to determine which agent or subagent is
responsible for that MIB variable. For accessing the application MIB variables, it passes the
request to ECS subagent through the agent-subagent protocol which is SNMP MUItipleXing
protocol (SMUX).

The subagent is always waiting for incoming requests from the SNMP agent. When a request
comes in, it determines which access method to use for retrieving the requested MIB variable and
callsthat access method. The retrieved value will be passed back to SNMP agent and then relayed
back to the management application on the MSS Server.

ManagementFramework MsAgAgent MsAgSubAgent EcAgManager EcApplication

SNMPGet >

GetMibValue()———=>

CTOR() >

———ExecuteCallBack(}——>>

Figure 4.2.4.1-1. Get MIB Value Dynamic Model

4.2.4.2 SNMP Trap Generation Scenario

Abstract

* This scenario will demonstrate how an SNMP Trap is generated when a fault condition
occurs in an ECS application.

I nterfaces
e Management Framework in M SS Fault Management
* EcUtLoggerRelA in CSS

Stimulus

» Anerror condition occursin an ECS application. The error is serious enough to inform the
Fault Management application which runs on MSS Server.

Participating Classes
* ECSapplication
EcAgAgent
MsAgMonitor
MsAgSubAgent
MsAgDeputy

4-15 313-CD-001-002

Pre-conditions

ECS applications are running on amanaged ECS host. The SNM P agent and ECS subagent
are al up and running. The management framework is running on MSS Server.

The ECS application is instrumented with the M SS-provided class library. When the fault
condition occurs, ECS application is able to send out event notifications through the
sendEvent method of ECAgEvent object. The ECS subagent is up and running on the host.
It islistening to receive DCE remote procedure calls.

The Deputy of SNM P manager (management framework) on M SS Server isup and running
which isready to receive DCE remote procedure calls.

Post-conditions

The ECS application may or may not be running caused by the error condition.
The ECS subagent continuous listening to receive DCE RPC calls.
The Deputy of SNMP manager continue to listen to receive DCE RPC calls.

An SNMP trap is generated to the management framework on MSS server. The fault
management application detects the fault condition of that ECS application on that host.

Scenario description

When a fault condition occurs in an ECS application, the application instantiates an object
EcAgEvent. The application invokes the sendEvent method on that object sending an event
notification to MsAgSubAgent. The MsAgSubAgent will log the event to MSS log which is
managed by CSS EcUtL oggerRelA. Then, the MsAgsubAgent will check the severity of the event.
If it ishigher than theinfoLevel, then this event notification will go further to the MSS Server. The
MsAgSubAgent will instantiate an object ECAgEvent and invoke its sendEvent method to send this
event to the MsAgDeputy on the M SS Server. The MsAgDeputy will then in turn convert the event
to an SNMP trap and send it to the management framework which is HP OpenView.

ECS

Application EcAgEvent MsAgSubagent EcUtLoggerRelA LogFile MsAgEvent MsAgDeputy ManagementFramework

[CTOR)—>>

-SendEvent()>>{

CTOR()——>
——LogEvent()—=>

CTOR()

—SendEvent()—=
——SnmpTrap()—>>

Figure 4.2.4.2-1. SNMP Trap Generation Dynamic Model

4-16 313-CD-001-002

4.2.5 FOS Event API

The FOS Event service provided by the FOS Data Management Subsystem are made available to
ECS subsystems through a set of public classes. These public classes provide the interface for
MSS to convey management event information to FOS. These public classes, their attributes and
their methods are covered in this section.

The FdEventL ogger class provides appliation software a way to send events to the event handler.
The user calls the GenEvent operation passing the appropriate paramenters whenever an event
needs archived and sent to display. The FdEvEventLogger class will create a FOEVEvent class
from the calling parameters and send the FOEvEvent class the the FdEvEventHandler class.

The FdEvEvendHandler class routes events to the FdEVEventArchiver. The FAEvEventHandler
class uses the FdEvEventConfig Class to determine which events need to be sent to the
FdEVEventArchiver class.

The FdEvEventConfig class containsincoming and outgoing event fileters. The user can select the
type of event that need to be sent to the event archiver, and the type of eventsthe user station needs
to listen for.

The FdEvEventArchiver class receives unformatted events from event handlers. the
FdEvEventArchiver uses the FdEVEventDb event databse class to determine how to format the
events. Theformatted events are archived using the FdEvEventFile class, and multicasted over the
network to user stations. The FdEventArchiver class also uses the event databse to determineif a
procedure needs initiated. If a procedure needs initiated the FAEVEventArchiver class will
instantiate a FAEvProcedure class.

The FdEVEventListener classlistensfor formatted events on the network. The FOEVEventListener
filters events by using information provided in the FdEvEventConfig class, and then sends the
eventsto display.

4.2.6 FOS Event Dynamic Model

4.2.6.1 FOS Event Processing Scenario Abstract

The purpose of the Event Processing scenario is to describe the process by which events are
generated, archived, and sent to displays. The event trace for this scenario can be found in
Figure 4.2.6-1.

4-17 313-CD-001-002

=]
FdEVEventLogger
+ GenEvent(myEventlD, mySpacecraftld, : EcTBoolean
mySubsystem, myParamList,
myLineNumber, myFile)
sends
=]
FoEvVEvent
myEventID 1+
- mySpacecraftld : RWCString ° sent to—|

mySubsystem : Container*
myNode : RWCString
myParamList : Container*
myLineNumber : EcTint
myFile : RWCString

8l

¢00-T00-AO-€TE

FdEvEventDB

- myEventlD : EcTInt

- myEventType : Container*
- myBackground : RWCString
- myProcedure : RWCString
- mySeverity : EcTInt

- mySubsystemFlag : EcTInt

+ ReadEvent() : EcTInt
+ Open() : EcTint
+ Close() : EcTInt

FdEvProcedure

myProcName:String : RWCString

StartProc() : EcTint

FdEVEventFile

myFileName : RWCString
myHandle : EcTInt

=
& FdDbMetadata
- myFileName : RWCString
CslfMessageHandler - myPath : RWCString
- myType : EcTInt
- myStorageloc : EcTInt
- myCreateDate : RWTime
- myUR : EcTint
- mySize : EcTInt
Sends
IIF
objects
updated reads
by
B = | =]
FdEVEventHandler -
1+ FdEvEventArchiver
@ sends tart:
+ SendEvent(FoEvEvent) : EcTInt - -
+ Init() : EcTVoid + MyIllcastEven‘(FoEvFormattedEvent) : EcTInt
+ ReadEvent(FoEVEvent) : EcTInt *+ Init) : EcTVoid M
reads
=]
FdEvEventConfig
formats/
- mylncomingTypes : Container archives/ read/write
- myOutgoingTypes : Container multicasts events
Read()
Open()
Close()
| fal
read FoEvFormattedEvent: =]
b - .
y myEyemId : EcTInt contained
= | - myTime : ECTTime . |-
- mySpacecraft:String : RWCString n -
FoEvEventListener reads/ - mySubsystem : Container*
sends - myType :Containgr* +
+ ReadEvent() : EcTInt - myNode :RWCStrlng . *
+ DisplayEvent() : EcTInt - myMessage.. RWCString +
+ DisplayConnect() : EcTInt B myS‘ever.lty - EcTint *
+ DisplayDisconnect() : EcTInt - myLl}ne : EcTint . +
" - myFile : RWCString

Init() : EcTInt

Open() : EcTInt

Read(FoEvFormattedEvent) : EcTInt
Write(FoEvFormattedEvent) : EcTInt

Close() : EcTInt

ReadIndex(Time, FoEvFormattedEvent) : EcTInt

+

+ SetTime() : EcTiInt
+ BuildEvent() : EcTInt

FormatMessage(Background,ParamList) : EcTInt

Figure 4.2.6-1. DMS Event Processing Object Model

4.2.6.2 DMS Event Processing Summary Information

Subsystem Interfaces:
CSMS.MSS
FOS Offline analysis
FOS Real-Time Telemetry
FOS Real-Time Command
FOS Real-Time Resource Management
FOS Real-Time Contact Manager
FOS Planning and Scheduling
FOS Command Management

Stimulus:
FDEventL ogger genevent operation is called by application software.

Desired Response:
Formatted event is created, archived, and multicasted.

Pre-Conditions:
Event applications initialized.

Post-Conditions:
Event is stored at data server, and displayed at user station.

4.2.6.2 DMS Event processing Scenario Description

The FdEVEventLogger provides applications with away to send eventsto the FdEvEventHandler.
The FdEvEventLogger is responsible for creating a FoEvEvent and sending it to the
FdEvEventHandler.

The FdEvEventHandler class sends the FOEvEvent class to the FdEvEventArchiver class. The
FdEvVEventARchiver class crates an FoEvformattedEvent by using the FdEvEvendDB event
databse class, and information provided in the FOEvEvent class. The FdEvEventArchiver class
will use the event id to index into the FAEVEVendDB. The FdEvEventArchiver starts the
FdEvProcedure class if the FdEvEventDb class defiens a procedure to initiate. The
FdEvEventArchiver archives FoEvFormattedEvent classes to the FdEvEventFile, and then
multicasts FoEvformattedEvent classes over the network.

The FoEvEventListener class reads FoEvFormatted Event classes off the network. The
FoEvEventLister class uses th eFdEVEventConfig class to filter events. The FoEvVEventListener
sends FoEvFormattedEvent classes to the event displays.

4.2.7 Management Service Requirements

1. MSS shall provide FOS with a service that shall monitor specified hardware, software and
network components for changes in state.

4-19 313-CD-001-002

2. MSS shall allow the FOS to register permanent and transient software processes upon cre-
ation for monitoring by the provided Management service.

3. MSS shall alow the FOS to unregister transient software processes with the Management
Service upon process termination.

4. MSS shall report changes in state of managed components to the FOS within five TBR sec-
onds.

5. MSS shall report the current state of managed components to the FOS at least once every
five TBR seconds whether or not the state of the managed component has changed.

6. MSS shall report management events to the FOS by providing the following information:
a. UTCtimetag
b. Event type
c. Event Identifier
d. Event message
e. Spacecraft Identifier (if applicable)
f. Instrument Identifier (if applicable)

4.3 Performance

4.3.1 Performance Description

CSMS monitors FOS hardware and software performance. Resource availability and resource
utilization data are collected on FOS resources using management agents to store the information
to alocal log file. Performance datathat isto be compiled into management reports are sent from
the log file to the management database on the Enterprise Monitoring Server viathe Management
Data Access service. This information can then be captured in standard or ad hoc performance
reports. Examples of performance management reports include resource availability reports,
resource utilization reports, and performance statistics reports. Specific performance metricsto be
gathered and reported are listed in Section 4.3.5.

4.3.2 Performance Context Within FOS

CSMS uses management agents to collect FOS performance data. These agents gather
performance data from the FOS applications via either operating system calls or APIs. While
operating system calls are used wherever possible, since they allow for the non-intrusive
monitoring of FOS applications, APIs are built into the FOS application designs to gather
necessary performance data that cannot be obtained in a non-intrusive manner. All gathered
performance dataislogged on the FOS host, with alimited subset sent in real timeto the enterprise
management framework. Thelogged information is periodically correlated into summarized data.
Thissummarized dataisimported into the RDBM S on the Enterprise Monitoring Server for further
performance analysis. Theindividual logs are then archived for possible future use.

4.3.3 Performance Interface Definition

The performance metrics to be collected are listed in Section 4.3.5. All of these metrics can be
collected and managed by the COTS Performance Application in a non-intrusive manner.

4-20 313-CD-001-002

4.3.4 Performance Dynamic Model

Applicable performance dynamic models are included in the Release A MSS Design Specification
(305-CD-013-001), section 6.2.4.

4.3.5 Performance Metrics
The following performance metrics are gathered from FOS elements:

4.3.5.1 FOS Host Performance Metrics
Memory :

CPU:

Disk:

amount and percentage of physical memory utilized by user
amount and percentage of physical memory utilized by process
amount and percentage of physical memory utilized by kernel
amount and percentage of allocated swap space (reserve or in-use)

amount and percentage of CPU time utilized per process
amount and percentage of CPU time utilized per user

rate of physical disk I/O's (per second)
rate of logical disk 1/0O's (per second)
rate of physical datatransfer to and from disk (per second)

Network:

rate of packets sent and received (per second)
rate of LAN collisions (per minute)
rate of LAN errors (per minute)

System:

number of userslogged into system
number of processes running on system
rate of process swaps (per minute)

rate of system calls (per second)

Queues:

number of processes waiting on terminal 1/0s

number of processes waiting on network activities

number of processesin run queue

number of processes waiting on disk 1/0s

number of processes waiting for inter-process communications, including
semaphores, message queue, pipes, and sockets

4.3.5.2 FOS Process Performance Metrics
Per process.

process ID

CPU utilization
memory utilization
disk reads

disk writes

4-21 313-CD-001-002

4.4 Scheduling

The MSS Ground Events Planning Service is a complete reuse of the Production Planning
Workbench that is part of the Production Planning CSCI provided by the Planning and Data
Processing Subsystem (PDPS). The Production Planning Workbench is used to prepare a schedule
for the production at the EOC, and forecast the start and completion times of the activities within
the schedule. The functions provided by the workbench include creating a candidate plan from
production requests, activating a candidate plan, updating the active plan, and canceling or
modifying the active plan.

The Production Planning Workbench provides an interface to submit operations ground events
such as production, maintenance, and testing. It devel ops optimum resource utilization plans and
schedules based upon approved system configurations and priorities.

The Production Planning Workbench is used to plan ground eventsfor all site resources, including
FOS resources at the EOC. The flight operations schedules generated by the FOS planning and
scheduling function are be used by the Ground Event Planner as input to resource planning for
ground events support. Once the flight operations schedul es have been received, the Ground Event
Planner generates a ground event schedule based on resource availability. In addition the ground
event schedule and allocated resources are available to EOC operations staff and are expected to
be closely coordinated during the planning process. The design of the Planning Workbench
supports multiple users and therefore can be used by the EOC operations staff to all ocate resources
to specific missions.

4.5 Configuration Management

The Configuration Management Application Service (CMAS) provides tools with which the ECS
staff at the EOC tracks deployed ECS baselines and controls changes to the hardware and software
that comprise them.

CMAS maintains electronic stores of baseline data, software, and system change requeststhat enter
the operational environment, making them and a variety of reports available for system
maintenance and operations activities. It accepts ECS and algorithm software and non-real time
configuration management data from formatted files or via operator interface. M&O staffs,
sustaining engineers, and AIT teams rely on CMAS data stores to make, track and audit
configuration changes and to help enforce ECS CM rules. They aso use CMAS to produce
formatted files containing change requests, site baseline records, software, documentation, and
reports that can be made available for distribution system-wide via CSS services such as e-mail,
ftp, and the ECS bulletin board.

The CMAS includes three service managers.

Baseline Manager - The Baseline Manager isaCOT S application that helpsthe EOC M& O
staff manage ECS baseline records. The Baseline Manager COTS application is an inter-
active product that facilitates the tracking of baselines. ECS-customized portions of the
Baseline Manager include reports, tailored input forms, interfacesto ClearCase and DDTS,
and triggers for system management activities.

4-22 313-CD-001-002

Software Change Manager - The Software Change Manager is a software application that
helps the EOC M& O staff organize and partition software, control software changes and
versions and assemble sets of software for release purposes. ClearCase, a COTS product,
has been selected to perform the Software Change Manager functions. ClearCase provides
extensive software library management facilities. ECS-customized portions of the Soft-
ware Change Manager include reports, triggers to implement policies and provide an inter-
facewith DDTS and the Baseline Manager, scripts for frequently recurring operations, and
views for providing accessto related files.

Change Request Manager - A software application that enables the EOC staff to register
and keep track of configuration change requests (CCR), non-conformance (NCR), and de-
ficiency reports (DR) electronically. The Distributed Defect Tracking System (DDTS), a
COTS product, has been selected to perform the Change Request Manager functions.
DDTS provides interactive functionality for tracking CCRs and NCRs. ECS-customized
portions of the Change Request Manager include forms and reports, tailoring of rules and
event flow logic to the ECS environment, and interfaces with ClearCase and the Baseline
Manager.

4.6 Other Services

Other M SS services provided to FOS are Security Management, Accountability Management, and
Trouble Ticketing. These services do not interface directly with FOS applications other than the
Security Management and Accountability Management event notifications which are described in
the Management Services section (Section 4.2).

4.6.1 Security Management Service

The Security Management Application Service provides for the management of the security
mechanisms that are used to protect and control access to ECS resources at the EOC. It provides
the rules and the implementation for authentication procedures, the maintenance of authorization
facilities, the maintenance of security logs, intrusion detection and recovery procedures. The
mechanisms used to provide security in ECS comprise three distinct parts. network security,
distributed communications security, and host-based security.

Network security management involves the management of routing tables used for address-based
filtering (network authorization). This is implemented through router COTS configuration files
through which access control rules are specified.

Distributed communications security addresses communications between software entities such as
clients and servers employing mechanisms such as Kerberos/DCE for real-time authentication
exchange. The management of distributed communications security involves the management of
the authentication database (the DCE registry database), the authorization database (DCE Access
Control List Managers). This is implemented through the use of HAL DCE Cell Manager. The
DCE Cell Manager is a COTS product that provides a Motif-based capability to administer the
DCE security registry (authentication database), and the access controls on cell resources
(authorization database).

Host-based security management addresses the control of access to and the protection of these
mechanisms, in addition to the management of compliance to established security policy (e.g.,

4-23 313-CD-001-002

password usage guidelines), and intrusion detection (e.g. break-ins). Access control to network
servicesisimplemented through TCP wrappers, a public domain tool. Compliance management is
implemented through public domain products npasswd, crack, and SATAN. Intrusion detection is
implemented through the public domain product Tripwire, and custom devel opment.

The EOC Security Management Application Service manages local security databases, manages
compliance to security directives and guidelines established and disseminated by the SMC,
performs intrusion detection checks in order to maintain the integrity of ECS resources, provides
the capability to analyze security audit trails, and provides the mechanisms to generate reports for
such these activities. The SMC Security Management Application Service is responsible for
establishing and disseminating security guidelines to the sites, disseminating security advisories
received from external systems (security agencies such as CERT and NIST) to the sites, receive
security reports from the sites, and to receive notifications of and coordinate the recovery from
detected security breaches at the sites and external systems.

Notifications of security events and summary data are forwarded by the Security Management
Application Service to the SMC, while coordination for recovery and security advisories are
received from the SMC. An interface to the Fault Management Application Service (via the
Management Agent Service) allows for the Security Management Application Service to send
security event notifications, fault events, and receive startup and shutdown commands. The use of
event notifications by the Security Management Application Service is described in the
Management Services section (Section 4.2).

4.6.2 Accountability Management Service

The Accountability Management Service provides the capabilities of User Registration and the
generation of reports from audit trails.

The EOC provides for the registration of the IST class of users. The registration service provides
the capabilities for the creation, modification and maintenance of accounts with user profiles.

The user profile contains information about the user. This includes the name of the user, a user
identification code, the user's primary DAAC, the organizational affiliation, investigating group
(such as an instrument team) affiliation (if any), the project the user is affiliated with, the name of
the Pl of the project, the mailing address of the user, the shipping address to which data needs to
be sent, media preferences for orders, the user's telephone number and the user's electronic mail
address (if any).

The Accountability Management Service makesthe user profileavailable, such asthe Data Server,
information such as the user's el ectronic mail address and the shipping address, which are used for
the distribution of data.

The Audit Trail capability provides the meansto verify the integrity of the system. This comprises
the generation of a user audit trail and a security audit trail with data collected from a variety of
sources. The data used to generate these audit trails is captured to local log files via the event
logging services described in the Management Services section (Section 4.2).

4.6.3 Trouble Ticketing Service

The Trouble Ticketing Service (TTS) provides the EOC as well as the DAACs with a common
environment and means of classifying, tracking, and reporting problem occurrence and resol ution

4-24 313-CD-001-002

to both ECS users and support staff members. TTS's core functionality is provided by the Remedy
Action Request System, a COTS product. Through the configuration of this product, TTS.:

» providesagraphical user interface for support staff membersto accessall TTS services
* includes a definition of the common trouble ticket entry format

» storestroubletickets

* retrievestrouble tickets through awide variety of criteria (ad-hoc queries)

» providesthe ability to "forward" problems from the EOC to another ECS location (DAAC
or SMC)

» produces stock and common reports

» interfaces with the common e-mail environment to provide automatic notification to users
and support staff members

» offersan application programming interface through which applications could submit trou-
ble tickets

e provides summary information to the SMC to allow trend reports regarding troubl e tickets.

» defines a consistent "life-cycle" for trouble tickets (through a set of standard status codes
and escalation and action rule definition)

» alowsthe EOC (and each of the other sites) a degree a customization through definition of
further escalation and action rules

Escalation rules are simply time activated events which execute on troubl e tickets which meet a set
of specified criteria. Actions which can be taken include notification (of either a user or support
staff member), writing to alog file, setting a field value on the trouble ticket, or even running a
custom written process. Qualifications can be expressed on any trouble ticket data TTS tracks.
Examples of custom escalation rules might include...

if a"High" priority troubleticket staysin "Assigned" for more than 48 hours without being
moved to "In-Progress’, re-notify the assigned support staff member

if a"Low" priority troubleticket isnot moved to "Closed" within 14 days, raise the priority
to "Medium™ and re-notify the assigned support staff member

Activelinks are similar to escalation rules with the exception that they are defined to take place on
aspecified action rather than at agiven time. Examples of custom activelinkswhich can be defined
by the EOC include...

if ahigh priority trouble ticket is closed with a particul ar resolution code, notify a specified
member of the support staff (perhaps a manager)

In addition to the functionality provided by Remedy, TTS utilizes a set of custom HTML
documents to provide users with the ability to submit new trouble tickets and query the current
status of any of their previous entries. Accessto TTS through this technique provides users an easy
method for reporting problems in an environment with which most are aready familiar.
Additionally, as another means of trouble ticket entry, the TTS provides atextual e-mail template
through which automated entry of trouble tickets is also possible. Finaly, support staff members
are able to enter trouble tickets through the Remedy provided interface for problem received via
other methods (e.g. phone calls).

4-25 313-CD-001-002

This page intentionally left blank.

4-26 313-CD-001-002

5. SDPS Services

5.1 FOS/SDPS Interface Overview

5.1.1 Overview

This section of the ICD provides a FOS-specific description of the data services provided by the
SDPS to the FOS. Specific information (e.g., type, frequency, volume) for data exchanges is
presented.

5.1.2 SDPS/FOS Interface Description

The SDPS supports the ingest of datainto ECS storage repositories. The SDPS supports adiverse
set of internal and external interfaces. A variety of data structures and formats must be supported,
each with potentially unique aspects. Therefore, the SDPS provides ingest clients to handle each
internal and externa interface. In particular, an ingest client will be established to support the
interface with the FOS Data Management Subsystem (DMYS) for the ingest of FOS datafiles. The
SDPS Data Server provides long-term archiving services for the FOS. The data to be archived
includes the spacecraft and instrument real-time housekeeping telemetry files, ground telemetry
(CODA and NCC monitor blocks), event files, configuration data files, operationa datafiles, and
plans and schedules.

Once data are stored in the SDPS, the FOS may request retrieval of the data. The SDPS provides
the set of public servicesto allow dataretrieval.

The FOS DMS provides services for database update and retrieval, file management, and data
archival and retrieval. The FOS Data Management (FDM) archive maintains the telemetry data,
event data, and operational data files for a nomina period of one day. After one day the datais
sent to SDPS for permanent archive. The data is maintained in the FDM archive for a minimum
of 7 days, but the data may be purged from the FDM archive after 7 days if confirmation of
successful storage by the Data Server isreceived. A summary of the routine data types, frequency
of transfer, and file sizesto be transferred between the FOS EOS Operations Center (EOC) and the
SDPSIngest Clientsis contained in Table 5.1-1. Thetypes of data transferred between SDPS and
FOS are shown in Table 5.1-1.

Table 5.1-1. FOS Interface Data Type Description (AM-1) (1 of 2)

Source Destination File type # of | Freq./| File Comments
files | day size
(MB)
SoPS FOC DVS - [Real-tme 7 5 T2 |Merged Housekeeping
Telemetry
SDPS EOC DMS |Ground 2 24 1 CODA, NCC Monitor Blocks
Telemetry
SDPS EOC DMS |Events 1 24 1 Event file every hour

51 313-CD-001-002

Table 5.1-1. FOS Interface Data Type Description (AM-1) (2 of 2)

Source Destination File type # of | Freq./| File Comments
files | day size
(MB)
wmtonﬂgurmlon 30 weekly B |Databases, pocuments,
Data Templates, Definitions, Network
Config
SDPS EOC DMS |Operational 2 20 1 Statistics, Reports, Logs, Request
Data Files, Snaps, Analysis Results,
Procedures, Dumps
SDPS EOC DMS |Plans&Schedul {10 1 5 Schedules, Profiles,LTSP,LTIP,
es FDF Data
EOC DMS SDPS Real-time 4 6 7.2 Merged Housekeeping
Telemetry
EOC DMS SDPS Ground 1 1 1 CODA, NCC Monitor Blocks
Telemetry
EOC DMS SDPS Events 1 24 1 2 hours of event data 5 times a day
EOC DMS SDPS Configuration |5 monthl |1 Databases, Documents,
Data y Templates, Definitions, Network
Config
EOC DMS SDPS Operational 1 50 1 Statistics, Reports, Logs, Request
Data Files, Snaps, Analysis Results,
Procedures, Dumps
EOC DMS SDPS Plans&Schedul |2 1 5 Schedules, Profiles,LTSP,LTIP,
es FDF Data
SDPS EOC DMS |Engineering Engineering data for each
instrument (from the Level O data)

5.2 Data Exchange Framework

Section 5.2 defines the data exchange framework for the network interface, message flows, andfile
transfers between SDPS and FOS. Section 5.2.1 describes the network interface, including routers
and I P addresses, file transfer mechanism, and security considerations. Section 5.2.2 describes the
control messages exchanged between the two systems for the necessary handshaking, and the
procedure for file transfers.

5.2.1 SDPS-FOS Network Interface

5.2.1.1 Network Protocol

The network protocol used for FOS/'SDPS communication is the Internet Protocol (IP), specified
in RFC 791, which routes the data via the GSFC exchange LAN. The topology of the network
interface between FOS and SDPS is TBD due to the EBnet consolidation. The IP addresses and
routers for the FOS and SDPS nodes in the network are TBD.

5-2 313-CD-001-002

5.2.1.2 Transport Protocol

The transport protocol used for FOS/SDPS communication is the Transmission Control Protocol
(TCP), providing reliable delivery of data. TCP transports data between the network and
applications. TCPis specified in RFC 793.

5.2.1.3 File Transfer

All file transfers are conducted using the kerberos file transfer protocol (kftp) "get" or "mget"
commands, "get" for transferring one file at atime and "mget" for transferring many files at once.
Kerberos is described in RFC 1510. All data exchanges between SDPS and FOS are to be
automated and pulled by the consumer system (Computer Based Interface (CBI) Get).

5.2.1.4 Security Considerations
File transfer security is handled by the kerberos ftp, and is documented in RFC 1510.

To maintain security integrity, Userl Ds and/or Passwords are changed periodically (at least every
6 months).

SDPS will enforce thisthrough Unix-like group and user permissions, described in Section 5.2.2.2
of the document 305-CD-012-001, "Release A CSMS Segment Communications Subsystem
Design Specification for the SDPS Project”.

FOS has the authority to order data, to get the status of these Data Requests, and to cancel Data
Requests.

5.2.2 Handshaking Control Messages and File Transfer Sequences

Initiation and compl etion of datatransfer requires transmission of control messages between SDPS
and FOS. Handshaking control messages between FOS and SDPS are employed by initiating an
application program-to-application program TCP/IP connection. The initiator of the connection is
the controller of the session, and is also the terminator of the connection. Table 5.2-1 lists the
messages involved before and after an electronic "mget" transfer. The specific messages which
comprise the handshaking procedure are defined in Sections 5.2.3.1 through 5.2.3.12.

Table 5.2-1. Control Messages (1 of 2)

Message Name Message Purpose Description
Authentication Session Establishment §ystem establishing TCP/IP connection requests
Request authentication; required immediately after session

establishment

Authentication Session Establishment Response to Authentication Request, containing
Response Authentication Check results
Data Availability Notification of Data Ready for |System with data notifies Consumer system that
Notice Transfer the data are staged and ready for transfer.
(DAN)
Data Availability DAN Handshake Consumer system acknowledges that the DAN
Acknowledgment has been received, and natifies of any DAN errors
(DAA)

5-3 313-CD-001-002

Table 5.2-1. Control Messages (2 of 2)

Message Name Message Purpose Description

Data Delivery Notification of Data Transfer . |consumer system notifies that data has been

Notice (DDN) transferred, ingested and archived; includes
identification of data retrieval success and/or
problems

Data Delivery DDA Handshake System with data notifies Consumer system that

Acknowledgment the DDN has been received, which indicates that

(DDA) the data can be deleted

Data Request Request data FOS requests data from the SDPS archive

Data Request Data Request Handshake SDPS acknowledges to FOS that the Data

Acknowledgment Request has been received and is or is not valid

Data Request Request status FOS requests the status of a Data Request

Status Request

Data Request Status SDPS provides FOS with the status of a Data

Status Request

Data Request Cancellation FOS requests cancellation of a Data Request

Cancellation

Request

Data Request Cancellation Notification SDPS notifies FOS that the Data Request has

Cancellation been canceled.

5.2.2.1 SDPS Retrieves Data From FOS to Archive

The transfer session is established through the exchange of an Authentication Request and
Response. Authentication is done immediately upon establishment of a connection, by sending an
Authentication Request message and receiving an Authentication Response message.

After successful authentication, FOS sends a Data Availability Notice (DAN) message to SDPS,
specifying the names of the data files, file sizes, file dates and times, number of files, and file
locations for the files available for SDPS to archive. SDPS sends the corresponding handshake/
control message, the Data Availability Acknowledgment (DAA), which reports the disposition of
the DAN. SDPS then schedulesto pull the data.

At the scheduled time (usually immediately), SDPS begins the "(m)get" kftp file transfer process,
and transfers all the files listed in the DAN. Each file name and size is checked against DAN
information, and thefile transfer result islogged for the Data Delivery Notice (DDN). After al the
files have been transferred, ingested, and archived or attempts exhausted, SDPS sends FOSa DDN
notifying whether all files were successfully archived or the reason for failure of the "mget". FOS
responds back with the corresponding handshake/control message, the Data Delivery
Acknowledgment (DDA). In the case of failurein filetransfer and archive, FOS sendsanew DAN
when the errors have been corrected.

It is possible to send more than one DAN within a TCP/IP session; however they cannot be sent
until the acknowledgment (DAA) is received for the previous DAN. Each DAN is distinguished
from the others by the sequence number and processor identifier which created it.

5-4 313-CD-001-002

In cases of problems in file transfers (kftp), data transfer attempts are repeated an operations
tunable number of times. However, if the problem cannot be resolved within amutually determined
time frame, SDPS and FOS operations personnel have the option to coordinate data delivery on 8
mm tapes.

5.2.2.2 FOS Requests/Retrieves Data From SDPS

The transfer session is established through the exchange of an Authentication Request and
Response. Authentication is done immediately upon establishment of a connection, by sending an
Authentication Request message and receiving an Authentication Response message.

After successful authentication, FOS sends a Data Request message to SDPS, ordering the data
needed for reprocessing. SDPS sends the corresponding handshake/control message, the Data
Request Acknowledgment (DRA), which reports the disposition of the Data Request. SDPS then
retrieves the requested data, if available, as soon as possible from the archive and places it on the
file server.

After successful authentication, SDPS sends a DAN message to FOS, specifying the number of
files, file sizes, file names and directory pathsfor the filesavailable for FOS to kftp from the SDPS
file server. If the number of filesisless than the number requested in the Data Request, then some
of the requested files were not found in the archive. Thereisone DAN sent for each Data Request.
FOS sends the corresponding handshake/control message, the Data Availability Acknowledgment
(DAA), which reports the disposition of the DAN. FOS then schedules to pull the data.

At the scheduled time (usually immediately), FOS begins the "(m)get" kftp file transfer process,
and transfers all the files listed in the DAN. Each file name and size is checked against DAN
information, and the file transfer result islogged for the Data Delivery Notice (DDN). After al the
files have been transferred successfully (but not verified) or transfer attempts have been exhausted,
FOS sends SDPS a DDN notifying whether al files were successfully transferred or the reason for
any transfer failure. SDPS responds back with the corresponding handshake/control message, the
Data Delivery Acknowledgment (DDA).

It is possible to send more than one DAN within a TCP/IP session; however they cannot be sent
until the acknowledgment (DAA) is received for the previous DAN. Each DAN is distinguished
from the others by the sequence number and processor identifier which created it.

In cases of problems in file transfers (kftp), data transfer attempts are repeated an operations
tunable number of times. However, if the problem cannot be resolved within amutually determined
time frame, SDPS and FOS operations personnel have the option to coordinate data delivery on 8
mm tapes.

5.2.2.3 FOS Requests Status of Data Request From SDPS

When FOS needs status of a Data Request, it sends a Data Request Status Request to SDPS. SDPS
then sends a Data Request Status message.

5.2.2.4 FOS Cancels Data Request

When FOS needs to cancel a Data Request, it sends a Data Request Request message to SDPS.
SDPS then sends a Data Request Cancellation message.

5-5 313-CD-001-002

5.2.3 Message Format and Contents Overview

The control messages identified in Table 5.3-1 vary in purpose, length and format. Some are
strictly handshaking messages, while others relate needed information to support datatransfer. The
message formats contain both fixed and variable length strings. A zero byte (NULL character) is
used as afield separator in the manner of the C programming language. Field lengths are specified
in terms of bytes, where abyteisequal to 8 bits. The specified field lengths do not include the null
character used to terminate variable length strings.

The order of transmission of agroup of bytesisthe normal order in which they areread in English.
Whenever abyte represents anumeric quantity, the left most bit in the diagram is the high order or
most significant bit. Similarly, whenever a multi-byte field represents a numeric quantity, the left
most bit of the whole field is the most significant bit; the most significant byte is transmitted first.

A control message is rejected when it contains errors or is sent in an inappropriate sequence. The
message source receives notification of this rejection from the message destination. Error
conditions for each of the messages include out-of-bound parameter values, invalid parameter
values, and missing parameter values (e.g., message type). In most cases, the messageis corrected
by the message source, and resent. Regjection of an Authentication Request also causes the TCP
connection to be broken.

The message transfer scenario between FOS and SDPS supports operator tunable parameters.
Operator tunable parameters include:

* Number of authentication attempts
» Time between authentication attempts

* Time either system waitsfor a DAN's corresponding DAA prior to resending
the DAN

» Time either system waits for a DDN's corresponding DDA prior to resending the DDN

* Time FOS waits for a Data Request Acknowledgment, Data Request Status, and Data
Request Cancellation prior to resending the Data Request, Data Request Status Request,
and Data Request Cancellation Request.

* Time between SDPS sending DAN to FOS and the time the datawill be deleted from the
SDPSfile server.

5.2.3.1 Authentication Request

Table 5.2-2 shows the contents and format of an Authentication Request. An Authentication
Request is a request from the Originating System to be verified as a valid user of the Destination
System. An Authentication Request is the first message sent by the originator of the TCP session
prior to transmission of any other datatransfer message. It is used during the Authentication Check
to validate the TCP session by verifying the requester's access and is performed immediately after
the establishment of each TCP session. If the Authentication Request is rejected, the connection is
broken. An authentication request failsif any of the message fields are invalid.

5-6 313-CD-001-002

Table 5.2-2. Authentication Request Message Definition

Field Description Type (Length in Bytes) Value
‘Wype Authentication Qequest Unsigned Integer (1 rTg
Message Length |Length of Message (L) in Bytes |[Unsigned Integer (3 B) <84

(non-zero integer)
Destination Communications Server ASCII String (< 20 B) processor id
System ID
Origination System [Communications Client ASCII String (< 20 B) processor id
ID
UserlD User-provided identification; ASCII(< 20 B) UserID
assigned by Destination system
Password Authentication parameter - ASCII (< 20 B) Password
password assigned to User by
destination system

5.2.3.2 Authentication Response

After the Destination System performs an Authentication Check on the Origination System, it
returns an Authentication Response. This response is used to relate the results of the TCP/IP
session validation process. If a service was invoked before authentication was performed, then an
Authentication Response message is returned with a disposition value of 2, indicating rejection.
Other conditions causing rejection of an Authentication Request are discussed in Section 5.2.3.
Table 5.2-3 defines the format and contents of the Authentication Response message.

Table 5.2-3. Authentication Response Message Definition

Field Description Type (Length in Bytes) Value
[Message Type . |Authentication Response . |onsigned mnteger (1 B) |16
Message Length |[Length of Message in Bytes |Unsigned Integer (3B) (<45
(non-zero integer)

Destination Communications Server |ASCII String (< 20 B) Same as Origination

System ID System in Authentication
Request

Origination Communications Client ASCII String (< 20 B) Same as Destination

System ID System in Authentication
Request

Authentication Result of authentication Integer (1 B) 1 - accepted

Disposition 2 - rejected

5.2.3.3 Data Availability Notice (DAN)

A DAN messageis sent by the system supplying the data to the Consumer System to announce the
availability of datafor transfer. It specifies the parameters needed to identify what files are ready
for pickup, their location, and how long they will be available in that location. The maximum
message length allowed for aDAN is 1 megabyte (1,048,576 bytes).

Each DAN includes a Message Header, Exchange Data Unit (EDU) Label, a DAN Label and
Parameter Value Language (PVL) Statements. Table 5.3-4 contains the Message Header and

5-7 313-CD-001-002

Standard Formatted Data Unit (SFDU) labels; Table 5.3-5 specifies the required parametersin the
DAN PVL and their values, for DANs from SDPS to FOS (where the Consumer System is FOS)
and from FOS to SDPS (where the Consumer System is SDPS).The DAN PVL statements are
ASCII strings, having at most 256 characters, in the form of: "Parameter = Value;". The value
strings shown in Table 5.3-5 include pre-defined values enclosed within single quote marks and
processor determined values. Processor determined values include ASCII aphanumerics, ASCII
numerics, and International Standards Organization (ISO) times to be filled in with the proper
values by the originating system's processor during DAN creation. The combination of the DAN
sequence number and originating system (processor identifier) parameters uniquely identify each
DAN and provides the link between related DAN, DAA, DDN, DDA, and Data Request control
messages. The FILE_SPEC and FILE_GROUP objects are repeatable within a single DAN, for
multiple files and/or file groups. The TOTAL_FILE_COUNT parameter indicates the number of
files staged for retrieval; if this number is less than the number of files ordered in a Data Request
it indicates that the some of the files were not found in the archive.

Table 5.2-4. DAN Message Header, and EDU and DAN Labels

Field Description Type (Length in Value
Bytes)
Message Header (4 Bytes)

Message Type indicates DAN Unsigned Integer (1 B) 1
Message Length Length of Message in bytes Unsigned Integer (3 B) < 1,048,576
Exchange Data Unit (EDU) Label (20 Bytes)

Control Authority ID Not used ASCII (4 B) ‘0000
Version ID Not used ASCII (1B) ‘0
Class1D Class of label ASCII (1B) 'z

S1 Not used ASCII (1B) 0

2 Not used ASCII (1B) 0
Data Description EDU Indicator ASCII (4 B) ‘0001
Delimitation Parameter Lengthin ASCII of DAN Label and PVL ASCII (8 B) <1,048,576

statements, including white space
DAN Label (20 Bytes)

Control Authority ID Not used ASCII (4 B) ‘0000
Version ID Not used ASCII (1 B) ‘0
ClassI1D Not used ASCII (1 B) ‘0

S1 Not used ASCII (1B) 0

2 Not used ASCII (1B) 0
Data Description Not used ASCII (4 B) ‘0000
Delimitation Parameter Lengthin ASCII of PVL statements, in- ASCII (8 B) <1,048,576

cluding white space

5-8 313-CD-001-002

Table 5.2-5. Required DAN PVL Parameters (1 of 2)

Parameter Description Type(Length | Consumer Value

in Bytes) System

ORIGINATING_ |Originator of DAN ASCII (20B) [FOSor FOS Processor

SYSTEM SDPS Identifier (see Note)

CONSUMER_ |Destination of DAN ASCII (20 B) [FOS or SDPS Processor

SYSTEM SDPS Identifier
(see Note)

DAN_SEQ_NO [Sequence number assigned by |ASCII (10 B) [FOS or < 9999999999

originating system SDPS

REQUEST_ID ([Identifier of corresponding Data |ASCII (20 B) [FOS REQUEST_ID

Request in Data Request

Acknowledgment

PRODUCT _ Name of Product which defines [ASCII (25 B) [FOS SDPS Product ID
NAME the collection of files comprising

of the product.
MISSION Mission or investigation which ASCII (20 B) [FOS 'FOS', 'DMSP, etc.

includes the sensors producing

the data of this notice

REQUEST _ Type of request which applies to |ASCII (12 B) |FOS 'Data Request'

TYPE this DAN

TOTAL_FILE_ |Total number of files to transfer |ASCII (4 B) FOS or 0 -9999

COUNT SDPS (0 means that no files
were found matching
Request)

AGGREGATE_ [Total number of bytes to transfer |ASCII (10 B) [FOS or < 9999999999

LENGTH (sum for all files) SDPS

EXPIRATION__ [ISO Time for data deletion from [ASCII (20 B) [FOS or yyyy-mm-

TIME originating system SDPS ddThh:mm:ssZz,
where T and Z are
literals
(TBD hours after DAN
sent)

OBJECT Start of file group parameters ASCII (10 B) [FOSor 'FILE_GROUP"

(repeat for each group of files) SDPS
DATA_TYPE SDPS Data Type ASCII (20 B) [FOS or 'LEVEL1', 'LEVEL2',
SDPS 'LEVEL3'

DESCRIPTOR [Name of sensor or instrument that |[ASCII (4 B) FOS or "TMI', 'VIRS',

collected the data SDPS PR, 'GV'

DATA_VERSIO [Version of Data files ASCII (4 B) FOS or 'V001' through 'V999',

N SDPS

OBJECT Start of file parameters (repeat for |ASCII (9 B) FOS or 'FILE_SPEC'

each file) SDPS

NODE_NAME [Name of network node on which [ASCII (30 B) [FOS or e.g.. 'shark.hitc.com'’

the file resides SDPS

59

313-CD-001-002

Table 5.2-5. Required DAN PVL Parameters (2 of 2)

Parameter Description Type(Length | Consumer Value
in Bytes) System
DIRECTORY_ID [File directory name (i.e., path ASCII (256 B [FOS or e.g./PR/Levell/
name) including SDPS
FILE_ID, but
excluding null
terminator)
FILE_ID File name ASCII (256 B |FOS or file name
including SDPS
DIRECTORY_|
D, but
excluding null
terminator)
FILE_TYPE File Data Type ASCII (20 B) |FOS or e.g., BROWSE',
SDPS 'IMAGE','METADATA',
'CALIBRATION!
FILE_SIZE Length of file in bytes ASCII (10B) [FOS or < 9999999999
SDPS
ISO Start time of data in file as [ASCII (20 B) [FOS or yyyy-mm-
BEGINNING_DA |defined in the metadata SDPS ddThh:mm:sszZ
TE/TIME where T and Z are
literals
ENDING_DATE/ [ISO End time of data in file as ASCII (20 B) [FOS or yyyy-mm-
TIME defined in the metadata SDPS ddThh:mm:ssZ, where
T and Z are literals
END_OBJECT |End of file parameters (repeat for |[ASCII (9 B) FOS or 'FILE_SPEC'
each file) SDPS
END_OBJECT [End of file group (repeat for each |[ASCII (9 B) FOS or 'FILE_GROUP'
file group) SDPS

Note. Each processor must have a unique identifier.

5.2.3.4 Data Availability Acknowledgment (DAA)

A DAA message is the corresponding handshake/control message for the DAN. The DAA
acknowledges receipt of the DAN and provides the mechanism to identify the status of data
transfer scheduling and any DAN errors. The short form of the DAA is used for both error-free
DANs and DANs with header and label errors. A long form of the DAA message is used when
somefilegroupsinthe DAN haveinvalid parameters. Other conditions causing rejection of aDAN
are discussed in Section 5.3.3. The format and content of the short and long DAA messages is
defined in Tables 5.3-6 and 5.3-7, respectively.

5-10

313-CD-001-002

Table 5.2-6. Short DAA Message Definition

Field

Description

Type (Length in
Bytes)

Value

Message |ype Short Data Avallability

Acknowledgment

Unsignead Integer (1 B) 2

Message Length

Length of Message in Bytes

Unsigned Integer (3 B)

19

DAN Sequence No.

DAN sender

Sequence number assigned by

ASCIT (10 B)

DAN_SEQ_NO in DAN

Disposition

Disposition Bits

Logical Bits (4 B)

all 0 - accepted

bit O - spare

bit 1-invalid DAN
sequence number

bit 2-spare

bit 3-invalid mission ID
bit 5.3- spare

bit 5-invalid file count
bit 6-invalid data
service

bit 7-other errors

bit 8 - EDU label error
bit 9 - DAN label error
bit 10 - invalid DAN
length

bit 11 - invalid
aggregate length

Transfer Start Time

Not used

Integer (1 B)

Null

Table 5.2-7. Long DAA Message Definition (1 of 2)

Field Description Type (Lengthin Value
Bytes)
Wessage |ype Long Data Avallapility unsigned Integer (1 BS K
Acknowledgment
Message Length Length of Message in Bytes Unsigned Integer (3 B) |< 1,048,576

DAN Sequence No. |Sequence number assigned by |[ASCII (10 B) DAN_SEQ_NO in DAN
DAN sender
Number of File Groups |[Number of File Groups with ASCII (4 B) Number of File groups,

(to follow)

Errors

in DAN, with errors

5-11

313-CD-001-002

Table 5.2-7. Long DAA Message Definition (2 of 2)

Field

Description

Type (Lengthin
Bytes)

Value

For each file group

having errors

Data Type PVL

SDPS Data Type

ASCII String (< 20 B)

DATA_TYPE in DAN

Descriptor PVL

collected the data

Name of instrument/ sensor that

ASCII String (< 60 B)

DESCRIPTOR in DAN

Disposition

Disposition bits

Logical Bits (2 B)

bit O - not used

bit 1 - invalid data type

bit 2 - not used

bit 3 - invalid descriptor

bit 4 - invalid directory

bit 5 - not used

bit 6 - not used

bit 7 - not used

bit 8 - invalid file size

field

bit 9 - invalid file ID

bit 10 - invalid time/data
format

bit 11 - invalid version #

bit 12 - invalid node
name

5.2.3.5 Data Delivery Notice (DDN)

A DDN is sent from the system which has completed retrieving the files via kftp from the supplier
of the data. The DDN announces the completion of data transfer and archival, and identifies the
success of file transfers and any errors or problems that occurred. The short DDN is used for
notification of error-free data transfers and mainly communication related errors. If al filesin a
request do not have the same disposition, along form of this message is employed. The format and
content of the short and long DDN messages is defined in Tables 5.2-8 and 5.2-9, respectively.

5-12

313-CD-001-002

Table 5.2-8. Short DDN Message Definition

Field Description Type (Lengthin Value
Bytes)
Message Type . |onort Data Dellvery Notice . jonsigned nteger (1 B) |11
Message Length |Length of Message in Bytes |Unsigned Integer (3 B) |46
DRR Sequence No.|Not used Integer (4 B) 0
DAN Sequence No.|Sequence number assigned |ASCII (10 B) DAN_SEQ_NO parameterin
by DAN sender DAN
Disposition Successful Integer (1 B) 0
Network Failure 1
Unable to Establish FTP 2
Connection 3
Host Denied Access 4
All File Groups/Files 5
not found 6
FTP failure - Too many errors 7
in file transfer
Post-transfer
double-check failed
FTP command error
Spares (3B)
Time Stamp ISO Time when Consumer |ASCII (20 B) GMT in the following
System transferred the last format;
part of the data yyyy-mm-ddThh:mm:ssZ,
where T and Z are literals
Throughput Rate in bytes per second Integer (4 B) >0 (0 indicates
averaged over all files unsuccessful transfer)
Table 5.2-9. Long DDN Message Definitions (1 of 2)
Field Description Type (Length in Bytes) | Value

Message Type Tong Data Delivery Notice

Onsignea Iteger (1 B) 12

Message Length Length of Message in Bytes [Unsigned Integer (3 B) <1,048,576
DRR Sequence No.|Not used Integer (4 B) 0
DAN Sequence No. |Sequence number assigned |ASCII (10 B) DAN_SEQ_NO
by DAN sender parameter in DAN
Number of Files Number of Files in DAN ASCII (4 B) TOTAL_FILE_COUNT
parameter in DAN
For each File

File Directory

ASCII string specifying file
directory name (i.e. path
name)

ASCII (< 256 B) (including
FILE_ID but excluding the
null terminator)

DIRECTORY_ID
parameter in DAN

File Name

File names on system
sending DAN

ASCII (< 256 B) (including

FILE_ID parameter in

DIRECTORY_ID but
excluding the null terminator)

DAN

5-13

313-CD-001-002

Table 5.2-9. Long DDN Message Definitions (2 of 2)

Field Description Type (Length in Bytes) |Value
e 1ranster One of the folowing: Tnteger (1 B)
Disposition Successful 0
Network Failure 1
Unable to Establish FTP 2
Connection
Host Denied Access 3
File not found 4
FTP failure - Too many 5
errors in file transfer
Post-transfer double-check 6
failed
All other failure conditions 7
Time Stamp ISO Time when Consumer [ASCII (20 B) GMT in format
System transferred the last yyyy-mm-ddThh:mm:ssZ,
part of the data where T and Z are literals
Throughput Rate in bytes per second for |Integer (4 B) >0 (O indicates
each file unsuccessful transfer)

5.2.3.6 Data Delivery Acknowledgment (DDA)

A DDA is the corresponding handshake/control message for the DDN. The DDA provides the
mechanism for the supplier of the data to acknowledge successful data transfer and/or data file
transfer problems. The short DDA isused under most conditions to acknowledge the DDN. A long
DDA message is sent in response to along DDN. Bit value 1 in the Disposition field is used to
acknowledge that the Consumer System was unable to locate one or more files. Bit value 2
indicates acknowledgment of all other identified failures. Other conditions causing rejection of a
DDN are discussed in Section 5.3.3. The format and content of the short and long DDA messages

isdefined in Tables 5.3-10 and 5.3-11, respectively.

Table 5.2-10. Short DDA Message Definition

Field Description Type (Length in Bytes) Value
Message Type . |[ohort Data Delvery Unsigned mteger (x 8y 1o
Acknowledgment
Message Length |Length of Message in Bytes Unsigned Integer (3 B) 39
DRR Sequence Not used Integer (4 B) 0
No.
DAN Sequence Sequence number supplied by ASCII (10 B) DAN_SEQ_NO
Number Originating System in DAN
Disposition Successful Integer (1 B) 0
Files not found 1
Validation failure 2
Time Stamp ISO Time when Consumer System |ASCII (20 B) Time Stamp in
transferred the last part of the data DDN

5-14

313-CD-001-002

Table 5.2-11. Long DDA

Message Definition

Field Description Type (Length in Bytes) Value
‘Wype Long malvery uUnsigned Integer (1 rﬁ
Acknowledgment
Message Length Length of Message in Bytes Unsigned Integer (3 B) <1,048,576

DRR Sequence No.

Not used

Integer (4 B)

0

DAN Sequence No. [Sequence number assigned by [ASCII (10 B) DAN_SEQ _NOin
sender of DAN DAN
Number of Files Number of files in DAN ASCII (4 B) TOTAL_FILE_COU
NT in DAN
For each File

File Directory

File directory name (i.e. path
name)

ASCII (< 256 B including
FILE_ID but excluding the
null terminator)

DIRECTORY_ID
parameter in DAN

System transferred the last part
of the data

File Name File name ASCII (< 256 B including [FILE_ID parameter
DIRECTORY_ID but in DAN
excluding the null
terminator)

File Transfer Successful Integer (1 B) 0

Disposition File not found 1

Validation failure 2
Time Stamp ISO Time when Consumer ASCII (20 B) Time Stamp in DDN

5.2.3.7 Data Request

The Data Request message is used by FOS to order products from SDPS that are currently in the
archive, to support FOS product reprocessing. The maximum amount of datathat can be requested
in one Data Request is 2 day's worth (i.e.,, ENDING_DATE/TIME minus BEGINNING_DATE/
TIME is less than or equal to 2 days). A Data Request is sent to the SDPS DAAC which has
archived the data (defined in Section 5). Table 5.3-12 defines the contents and format of the Data
Reguest message header and PV L specification.

Data are requested either by FOS GRANULE ID or by a search of parameters contained in the
SEARCH_GROUP object. The GRANULE_GROUP object isrepeatable within the Data Request
PVL, to accommodate ordering more than one GRANULE_ID (up to a maximum of TBD). The
SEARCH_GROUP object isnot repeatable so only one search can be performed per Data Request.

5-15

313-CD-001-002

Table 5.2-12. Data Request

Field

Description

Type (Lengthin
Bytes)

Value

Message Header (4 Bytes)

Message Type Indicates Data Request Unsigned Integer (1 B) (30
Message Length [Length of Message in bytes Unsigned Integer (3 B) (< 269
Data Request PVL Specification
PVL Indicates start of PVL ASCII (5 B) 'START'
ORIGINATING__ [Originator of data request ASCII (10 B) FOS Processor ID
SYSTEM
DESTINATION_U [FOS Processor ID to which ASCII (32 B) FOS Processor ID
SER SDPS sends DAN
DR_SEQ_NO Sequence number assigned by |ASCII (10 B) < 9999999999
Data Request sender
DELIVERY_TYPE [Type of delivery to use ASCII (10 B) 'ftp_pull’ or 'media’
MEDIA_TYPE If DELIVERY_TYPE is media, |ASCII (10 B) '8 mm tape'
specify media type
OBJECT Start of Granule group (repeat |ASCII (13 B) 'GRANULE_GROUP'
Granule groups for multiple
granule IDs)
GRANULE_ID FOS Granule ID in ASCII as ASCII (50 B) Valid FOS Granule IDs, as
defined in the FOS File referenced in the FOS File
Specifications documents and Specifications documents
the product metadata and the product metadata
END_OBJECT End of Granule Group ASCII (13 B) 'GRANULE_GROUP'
OBJECT Start of file group parameters ASCII (12 B) 'SEARCH_GROUFP'
FILE_TYPE SDPS File Data Type ASCII (12 B) e.g., ' BROWSE',
'IMAGE', 'METADATA',
'‘CALIBRATION'
INSTRUM_ID Instrument name ASCII (10 B) 'PR’, TMI', 'VIRS', 'GV'
PROCESSING_ [SDPS-defined Data processing |[ASCII (2 B) 'LOY "1A', "1B', '1C, 2A,
LEVEL level '2B', '3A','3B"
BEGINNING_ ISO Start time of data, as ASCII 1(20 B) yyyy-mm-ddThh:mm:ssZ,
DATE/TIME supplied in the metadata where T and Z are literals
ENDING_DATE/ [ISO End time of data, as supplied |ASCII (20 B) yyyy-mm-ddThh:mm:ssZ,
TIME in the metadata where T and Z are literals
END_OBJECT End of search group ASCII (12 B) 'SEARCH_GROUP'
END_PVL Indicates end of PVL ASCII (3 B) 'END'

5.2.3.8 Data Request Acknowledgment (DRA)

SDPS sends aDRA in response to a Data Request. The DRA message notifies FOS that either the
Data Request has been received, properly parsed, and queued by the SDPS data server or is
incorrectly formulated and has been rejected. It also provides FOS with a unique Request ID, for
future use in product statusing, cancellation of data requests, and/or correlating with the DAN
received from SDPS upon staging for retrieval. Table 5.2-13 defines the content and format of the
DRA which consists of a header and PVL.

5-16

313-CD-001-002

Table 5.2-13. Data Request Acknowledgment.

Field Description Type (Lengthin Value
Bytes)
Message Header
Message Type |Data Request Acknowledgment |Unsigned Integer (1 B) |31
Message Length of Message in Bytes Unsigned Integer (3 B) |< 63
Length
Disposition Successful Validation failure Integer (1 B) 0
1
PVL
PVL Indicates Start of PVL ASCII (5 B) 'START'
REQUEST _ID |SDPS-returned ID of submitted ASCII (20 B) unique ID
Data Request
ORIGINATING |Originator of Data Request ASCII (10 B) FOS Processor ID from
_SYSTEM Data Request
DESTINATION [FOS processor DAN destination |ASCII (10 B) DESTINATION_USER
_USER (final data destination) in Data Request
DR_SEQ NO [Associated Data Request ASCII (10 B) < 9999999999
Sequence Number
END_PVL Indicates End of PVL ASCII (3 B) 'END'

5.2.3.9 Data Request Status Request

The Data Request Status Request message is sent by FOS to SDPS and enables FOS to check on
the status of a Data Request which has been submitted to SDPS. The content and format of the

Data Request Status Request is defined in Table 5.2-14, including the message header and PVL.

Table 5.2-14. Data Request Status Request

Field Description Type (Length in Value
Bytes)
Message Header
Message Type Data Request Status Request [Unsigned Integer (1 B) [Data Request = 34
Message Length Length of Message in Bytes Unsigned Integer (3 B) [< 42
PVL
PVL Indicates Start of PVL ASCII (5 B) 'START'
ORIGINATING_ Originator of Status Request |ASCII (10 B) FOS Processor ID
SYSTEM
SDPS_ID Data Request ID to status ASCII (20 B) REQUEST _ID in DRA
END_PVL Indicates End of PVL ASCII (3 B) 'END'
5.2.3.10 Data Request Status

The Data Request Status message is sent by SDPSto FOS as aresponse to the Data Request Status
Request. It returns to FOS the status of a Data Request which has been submitted to SDPS. The

format and contents of a Data Request Status Request message is defined in Table 5.2-15.

5-17

313-CD-001-002

Table 5.2-15. Data Request Status

Field Description Type (Lengthin Value
Bytes)
Message Header
Message Type Data Request Status Unsigned Integer (1 B) [Data Request = 36
Message Length Length of Message in Bytes Unsigned Integer (3 B) |<53
Disposition Successful Integer (1 B) 0
SDPS ID not found 1
Validation failure 2
PVL
PVL Indicates Start of PVL ASCII (5 B) 'START'
ORIGINATING _ Originator of Status Request ASCII (10 B) FOS processor ID
SYSTEM
SDPS_ID Data Request ID ASCII (20 B) SDPS_ID in Status
Request
SDPS_ID_STATUS [Status of request ASCII (20 B) ex. Staged
TBD
END_PVL Indicates End of PVL ASCII (3 B) '‘END'

5.2.3.11 Data Request Cancellation Request

The Data Request Cancellation Request message is sent by FOSto SDPS. It enables FOS to cancel
any currently active Data Request which has been submitted to SDPS. It includes the ID provided
in the DRA or DSA message. Table 5.2-16 defines the format and content of the Data Request
Cancellation Request.

Table 5.2-16. Data Request Cancellation Request

Field Description Type (Length in Value
Bytes)
Message Header

Message Type Data Request Cancellation [Unsigned Integer (1 B) [Data Request = 38

Request
Message Length [Length of Message in Bytes [Unsigned Integer (3 B) < 32

PVL

PVL Indicates Start of PVL ASCII (5 B) 'START'
ORIGINATING_ |Originator of Cancellation ASCII (10 B) FOS Processor ID
SYSTEM Request
SDPS_ID Data Request ID to cancel |ASCII (20 B) REQUEST _ID in DRA
END_PVL Indicates End of PVL ASCII (3 B) 'END'

5.2.3.12 Data Request Cancellation

The Data Request Cancellation message enables SDPS to acknowledge receipt of a Data Request
Cancellation Request. It notifies FOS that the Data Request (SDPS ID) has been canceled, by
returning an SDPS ID_STATUS vaue of 'CANCELED'. The message format and contents is
defined in Table 5.2-17.

5-18 313-CD-001-002

Table 5.2-17. Data Request Cancellation

Field

Description

Type (Length in
Bytes)

Value

Message Header

Message Type

Data Request Cancellation

Unsigned Integer (1 B)

Data Request = 40

Message Length Length of Message in Bytes [Unsigned Integer (3 B) |[<51
Disposition Successful Integer (1 B) 0

SDPS_ID not found 1

Validation failure 2

PVL

PVL Indicates Start of PVL ASCII (5 B) 'START'
ORIGINATING_ Originator of Cancellation ASCII (10 B) FOS processor ID
SYSTEM Request
SDPS_ID Data Request ID to cancel [ASCII (20 B) REQUEST_ID in DRA
SDPS_ID_STATUS [Status = Canceled ASCII (8 B) 'CANCELED'
END_PVL Indicates End of PVL ASCII (3 B) 'END'

5-19

313-CD-001-002

This page intentionally left blank.

5-20 313-CD-001-002

Appendix A. MSS Managed Hardware Objects

FOS Managed Objects Brief Device Description Quantity
Multicast Server Server 1
Local System Manager Server 2
Real Time Server Server 2
Multicast Server Server 3
Data Server Server 2
File Server Server 3
RAID Unit Data Storage Device 1
Laser Printer Printer 4
Line Printer Printer 4
Color Printer Printer 4
Hub/Bridge Server 2
Time Server Server 2
FOT User Station Workstation 36
EOC Router Network Router 2
EBnet Router Network Router 2

A-1

313-CD-001-002

This page intentionally left blank.

A-2 313-CD-001-002

Appendix B. MSS Managed Application

(Software) Objects

Proc-esses: E'\\/llgmt
SDPS/FOS | Typeof | COTS Perm.or | Host | =VeHS
Managed Managed | and/or Brief Process Description Temp. (or to Fl)\/ISS’?
Objects Object | custom (sgelnotes Hosts) | (see notes
elow) below)

RMS: Application | Custom | Responsible for logical string Perm. RTSs, |F,P,S
String Process management, user service and USs,
Manager reconfiguration requests, command ISTs

and ground control privilege

management, real-time software

synchronization, failure recovery
RMS: Application | Custom | Monitors status of hardware and Perm. RTSs, |F,P
Resource Process software resources that are allocated USs
Monitor for mission critical processing
RCM: Application | Custom | Responsible for outgoing NCC Temp. RTSs F, P
NccOutput Process Messages. Created and configured
Manager by RMS to support real-time and

simulated spacecraft contacts.
RCM: Application | Custom | Responsible for incoming NCC Temp. RTSs F, P
Ncclnput Process Messages and DSN ODMs. Created
Manager and configured by RMS to support

real-time spacecraft contacts.
RCM: Application | Custom | Responsible for outgoing EDOS Temp. RTSs F, P
EdosOutput Process Messages. Created and configured
Manager by RMS to support real-time

spacecraft contacts.
RCM: Application | Custom | Responsible for incoming EDOS Temp. RTSs F, P
Edoslnput Process Messages. Created and configured
Manager by RMS to support real-time

spacecraft contacts.
CMD: Application | Custom | Controls command processing for the | Temp. RTSs F, P
Format Process CMD subsystem. Performs
Command command validation, formatting, and

verification.
CMD: Application | Custom | Implements the CCSDS COP-1 Temp. RTSs F, P
FopCommand | Process protocol.
CMD: Application | Custom | Meters CLTU's to EDOS at the CMD | Temp. RTSs F, P
Transmit Process uplink rate.
Command
CMS: Application | Custom | Interfaces with PAS and controls Perm. DS F.P
Schedule Process generation of ATC load and ground

schedule

B-1

313-CD-001-002

Mgmt

Proc-esses: Event
SDPS/FOS | Typeof | COTS Perm. or Host | 20eRS
Managed Managed | and/or Brief Process Description Temp. (or to ?\/ISS’)
Objects Object | custom (sgelnotes Hosts) | (see notes
elow) below)
CMS:Ground | Application | Custom | Continuaous schedule of commands. | Perm. DS F.P
Schedule Process Creates ground script and expected
state table
CMS:Load Application | Custom | Generates and aintains valid loads Perm. DS F,P,S
Catalog Process
CMS: Application | Custom | Models spacecraft memory Perm. DS F.P
Spacecraft Process
CMS: Application | Custom | Controls command level constraint | Perm. DS F.P
Command Process checking
Model
CMS:Rule Application | Custom | Checks command level constraints | Temp. DS F.P
ConstraintMdl | Process
PAS: Application | Custom | Tool for creating and modifying P&S | Temp. USs F, P
Activity Process activities.
Definer
PAS: Application | Custom | Responsible for processing text Temp. USs F, P
Activity Filte Process based activity schedule requests
(ASTER)
PAS: Application | Custom | Responsible for managing activities | Temp. USs F, P
Activity Process that have been removed from plans,
Recycler so that they may be rescheduled.
PAS: Application | Custom | The activity scheduler allows P&S Temp. USs F, P
Activity Process users to schedule activities on a plan
Scheduler
PAS: Application | Custom | Tool for creating and modifying Temp. USs F, P
BAP Definer Process baseline activity profiles.
PAS: Application | Custom | Tool that manages contact requests | Temp. RTSs, |F,P
Comm. Process and responses with the NCC. The USs
Contact scheduler also contains an algorithm
Scheduler for selecting contact requests.
PAS: Application | Custom | Responsible for distributing data from | Perm. RTSs, F, P
Data Process the EOC to the IST's USs
Distributor
PAS: Application | Custom | Responsible for ingesting FDF data | Temp. RTSs F, P
Event Process
Scheduler
PAS: Application | Custom | Schedules load/table uplinks. Temp. RTSs, |F, P
Load Uplink Process USs
Scheduler
PAS: Application | Custom | The Name Server provides a Perm. RTSs F, P
Name Server | Process centralized lookup table of running

resource models and tools

B-2

313-CD-001-002

Proc-esses: Mgmt
SDPS/FOS | Typeof | COTS Perm.or | Host | Events
Managed Managed | and/or Brief Process Description Temp. (or to Fl)\/ISS?
Objects Object | custom (see notes | Hosts) | (see notes
below) below)

PAS: Application | Custom | Responsible for providing a detailed | Temp. USs F,P
Plan Releaser | Process activity schedule to Command

Management
PAS: Application | Custom | The plan tool manages the EOC Temp. USs F, P
Plan Tool Process master plan and what-if plans.
PAS: Application | Custom | Central process in the P&S Perm. RTSs, |F, P
Resource Process architecture. The process models USs
Model states of resources over time,

contains activity definitions, BAP

definitions, plans and constraints.
PAS: Application | Custom | Allows FOS analysis to update the | Temp. RTSs F, P
SSR Update | Process state of the SSR model to reflect

actual state.
PAS: Application | Custom | Provides a graphical interface into the | Temp. USs F, P
Timeline Process plan. It shows resource states and

events over time. The timeline can

show accesses
TLM: Application | Custom | Responsible for collecting and storing | Temp. RTS F, P
MemoryDump | Process the downlinked spacecraft and

instrument computer memory dump

EDUs.
TLM: Application | Custom | Responsible for ingesting telemetry | Temp. RTS F, P
Decom Process EDUs or CCSDS Packets and USs

decommutating into parameters and ISTs

creating derived parameters. The

parameters are converted, static

checked, and limit checked. These

results are made available through a

parameter server. There will be 3

Decom processes (1 for each kind of

telemetry): Housekeeping; Health

and Safety; Standby.
TLM: Application | Custom | Responsible for comparing the Temp. RTS F, P
StateCheck Process spacecraft parameters against a set

of expected parameter values loaded

in as an expected state table.

StateCheck can also baseline the

expected state table from current

telemetry values.
DMS: Application | Custom | Receives analysis and replay Perm. DSs F.P
Queue Process requests from FUI. Determines
Manager where requests can run, and sends

request to appropriate location.
Manages queue by adding, deleting,
and modifying queue.

B-3

313-CD-001-002

Mgmt

Proc-esses: Event
SDPS/IFOS | Typeof | COTS Perm. or Host | 2 %rtzd
Managed Managed | and/or Brief Process Description Temp. (or to Fl)\/ISS’)
Objects Object | custom (sgelnotes Hosts) | (see notes
elow) below)
DMS: Application | Custom | Merges back orbit telemetry with real- | Perm. DSs F.P
Playback Process time telemetry.
Merge
DMS: Application | Custom | Receives events from event Perm. DSs F.P
Event Process handlers, formats events, archives
Archiver events, and multicasts events so that
users can view events.
DMS: Application | Custom | Retrieves events from event archive | Temp. DSs, F.P
Event Process and creates event history file. USs
Retriever
DMS: Application | Custom | Deletes files that are out of date. Perm. DSs F.P
Disk Cleaner | Process
DMS: Application | Custom | Receives data from FDF and EDOS. |Perm. DSs F.P
External I/E Process Alerts processes when data arrives.
Handler
DMS: Application | Custom | Sends data to and receives data from | Perm. DSs F.P
SCDO Process long-term archive.
Interface
DMS: DSs Custom | Retrieves telemetry data from Temp. DSs, F.P
Data Retriever telemetry archive. Sends telemetry USs
data to either analysis or telemetry
subsystem.
DMS: Application | Custom | Listens for formatted events Perm. USs F.P
Event Listener| Process multicasted by the event archiver
DMS: Application | Custom Receives unformatted events from Perm. DSs, F,P
Event Handler | Process application software, and forwards RTSs
the events to the event archiver. USs
DMS: Application | Custom | Allows for the retrieving and storing of | Perm. DSs, F.P
File Manager | Process data files. RTSs,
USs
DMS: Application | Custom/ |Ingest S/C and Instrument defintions | Temp. DSs F.P
PDB Input Process |[COTS into the PDB.
DMS: Application | Custom/ | Validates S/C and Instrument Temp. DSs F.P
PDB Process |COTS defintions.
Validation
DMS: Application | Custom/ | Allows for the updating of S/C and Temp. DSs, F.P
PDB Edit Process |COTS Instrument defintions. USs
DMS: Application | Custom/ | Allows for generation of PDB reports.| Temp. DSs, F.P
PDB Process |COTS USs
Reporting

313-CD-001-002

Mgmt

Proc-esses: Event
SDPS/IFOS | Typeof | COTS Perm. or Host | 2 %rtzd
Managed Managed | and/or Brief Process Description Temp. (or to Fl)\/ISS’)
Objects Object | custom (sgelnotes Hosts) | (see notes
elow) below)
DMS: Application | Custom/ | Generates ODB from the PDB. ODB | Temp. DSs F,P
oDB Process |[COTS is used by the application software.
Generation
DMS: Application | Custom | Archives telemetry or ground Temp. RTSs F.P
Archiver Process telemetry.
FUI: Application | Custom | Responsible for managing the user's | Perm. (user) [IST,US |F, P, S
FuEcControlle | Process environment. Includes default color
r schemes, logical string connections
and print directories.
FUI: Application | Custom | Responsible for user login Perm. ISTUS |F,P,S
FuUaUserLog | Process authentication.
in Ctrl
FUI: Application | Custom | Responsible for sending notification |Perm. DS F, P,S
FuCrCmd Process of a command request submission
RequestHandl and command request status.
er
FUI: Application | Custom | Responsible for managing Standing | Perm. DS F,P
FuSoManager Process Order requests.
FUI:FuAn Application | Custom | Responsible for managing the Temp. atIST |IST,US, |F, P
RequestHandl | Process sending, receiving and output and US, DS
er generation of analysis requests. Perm. at DS
(user)

FUI: Application | Custom | Responsible for allowing the user to | Temp. ISTUS |F,P
Room Process define room configurations
Definition
Window
FUI: Application | Custom | Allows the user to customize Temp. ISTUS |FP
FuUcCustom | Process workspace environment
Select
FUI: Application | Custom | Provides access to IST functions Temp. ISTUS |F,P
FuCwReg Process including event display
CtrlwWin
FUI: Application | Custom | Provides access to IST functions not | Temp. ISTUS |FP
EuCwMini Process including events display
CtrlWin
FUI: Application | Custom | Provides the user login window Temp. IST,US |F,P
FuUaUser Process
LoginWin
FUI: Application | Custom | Allows the user to send an event Temp. ISTUS |FP
FuQmQuick | Process message.
MsgWin

B-5

313-CD-001-002

Proc-esses: E'\\A/glr;ntt
SDPS/IFOS | Typeof | COTS Perm. or Host | 2 %rtzd
Managed Managed | and/or Brief Process Description Temp. (or to Fl)\/ISS’)
Objects Object | custom (sgelnotes Hosts) | (see notes
elow) below)
FUI: Application | Custom | Allows the user to transfer files. Temp. IST,US |F,P
FuDmDataMo | Process
verwin
FUI: Application | Custom | Allows the user to create and control | Temp. IST,US |F,P
FuFcReplay |Process a replay string for archived telemetry
CtrlWin
FUI: Application | COTS Allows the user to read/browse online | Temp. ISTUS |FP
FuDrDocume |Process documentation
nt Reader
FUI: Application | Custom | Allows the user to build customized | Temp. ISTUS |F,P
FuDbDis Process display pages
BuilderWin
FUI: Application | COTS Provides online context-sensitive Temp. ISTUS |FP
FuHIHelpWIn |Process help
FUI: Application | Custom | Provides the procedure Builder Temp. IST,US |F,P
FuPbProcBuil | Process window.
derWin
FUI: Application | Custom | Allows the user to select reports. Temp. ISTUS |F,P
FuRpSelector | Process
Dialog
FUI: Application | COTS Allows the user to view existing Temp. ISTUS |F,P
RuRpBrowse |Process reports.
Edit
FUI: Application | Custom | Processes report requests Temp. IST,US |F,P
FuRpReport | Process
Generator
FUI: Application | Custom | Allows the user to create a table load. | Temp. IST,US | F,P
FuLbTableBui | Process
I[dWin
FUI: Application | Custom | Allows the user to create RTS loads. | Temp. IST,US | F,P
FuLbRTSEdit | Process
or
FUI: Application | Custom | Allows the user to view a selected Temp. IST,US |F,P
FuCcGrnScrip | Process portion of the ground schedule.
t DisplayWin
FUI: Application | Custom | Displays the ground image of an ATC | Temp. ISTUS |F,P
FUuLdATCDisp | Process Buffer.
layWin
FUI: Application | Custom | Displays the ground image of an RTS | Temp. ISTUS |FP
FUuLdRTSDisp | Process Buffer.
layWin

B-6 313-CD-001-002

Proc-esses: E'\\A/grrp[t
SDPS/IFOS | Typeof | COTS Perm. or Host | 2 %rtzd
Managed Managed | and/or Brief Process Description Temp. (or to Fl)\/ISS’)
Objects Object | custom (sgelnotes Hosts) | (see notes
elow) below)
FUI: Application | Custom | Allows the user to execute non- Temp. IST,US |F,P
FuClProcCont | Process command procedures.
rolwin
FUI: Application | Custom | Allows the user to control the Temp. us F.P,S
FuCcCmdCon | Process execution of a ground script.
trolWin
FUI: Application | Custom | Allows the user to monitor the Temp. ISTUS |FP
FuCcCmdMo | Process execution of a ground script.
nitorwin
FUI: Application | Custom | Allows an authorized user create and | Temp. ISTUS |F,P
FuCrCmd Process submit a command request
RequestWin
FUI: Application | Custom | Provides a list of command request | Temp. ISTUS |FP
FuCrCmd Process status.
Request
StatusWin
FUI: Application | Custom | The ground script controller Perm. RTS F.P,S
FuGsGround |Process (string)
ScriptControl
FUI: Application | Custom | The real-time updating display Temp. ISTUS |FP
FuTdDynamic | Process Pages. Include status window,
Page alphanumeric display and table
displays.

FUI: Application | Custom | Allows the user to connect to dynamic | Temp. ISTUS |FP
FuDsDataSou | Process pages to establish logical strings.
rce
SelectorWin
FUI: Application | Custom | Allows the user to request history Temp. ISTUS |F,P
FuAnBuild Process data for analysis
HistoryReque
st
FUI: Application | Custom | Allows the user to view the status of | Temp. ISTUS |F,P
FuAnStatusWi | Process submitted analysis requests.
n
FUI: Application | Custom | Allows the user to request real-time | Temp. ISTUS |FP
FUANRTRequ |Process data for analysis
est
FUI: Application | Custom | Allows the user to register algorithms. | Temp. IST,US |F,P
FuAnAlgReg |Process
Win
FUI: Application | Custom | Allows the user to analyze real-time | Temp. ISTUS |FP
Event Display | Process events.

B-7

313-CD-001-002

Proc-esses: E'\\/l/grr?tt
SDPS/FOS | Typeof | COTS Perm. or Host | 20em
Managed Managed | and/or Brief Process Description Temp. (or to Fl)\/ISS?
Objects Object | custom (sgelnotes Hosts) | (see notes
elow) below)
FUI: Application | Custom | Allows the user to analyze history Temp. IST,US |F,P
Event History | Process event data.
Request
FUI: Application | Custom | Allows the user to select algorithms | Temp. ISTUS |F,P
FuAnAlgorith | Process for analysis
m Win
ANA: Application | Custom | Responsible for calculating Temp. RTSs F.P
ClockCorrelati | Process spacecraft clock error during R/T
on contacts.
ANA: Application | Custom | Responsible for recieving and Perm. USs F.P
RequestMana | Process monitoring Analysis Requests on an
ger individual User Station
ANA: Application | Custom | Responsible for processing an Temp. USs F.P
OfflineAnalysi | Process Analysis Request.
]
ANA: Application | Custom | Responsible for generating statistics | Temp. RTSs F.P
RTStatistics Process on NCC/EDOS R/T data
RTWorks (Application | COTS Commercial Package used for Expert | Temp. USs F.P
DSS) Process Advisor.
ANA: Application | Custom | Process responsible for sending EOC | Temp. USs F.P
DSSDataServ | Process data to the RTworks COTS product
er for Expert Advisor functions.
RTWorks (Application | COTS Commercial package used for SRR | Perm. RTs F.P
SSR) Process analysis
ANA: Application | Custom | Process responsible for sending SSR | Perm. RTs F.P
SSRDataServ | Process data to the RTworks SSR analysis
er package.

Permanent Processes are started at host startup and terminated at host shutdown. Temporary
processes are created and terminated as needed by a parent process independent of host startup and
shutdown.

Types of Management Events Reportable to MSS include:
* Faults (e.g. disk access errors, host peripheral status, application failures)

* Performance (e.g. application start/stop, communication protocol error counts, CPU
utilization)

* Security (e.g. logon/logoff, access to resources, password changes, privilege assignments)
* Accountability (e.g. user audit trail, data audit trail)

B-8 313-CD-001-002

Abbreviations and Acronyms

CCB
CCR
CDR
CDRL
CSMS
CSS
DID
ECS
EOS
EOSDIS
FOS
ICD
ISS
MSS
OMT
SDPS

Configuration Control Board
Configuration Change Request
Critical Design Review

Contract Data Requirement List
Communications and System Management Segment
Communications Subsystem

Data Item Description

EOSDIS Core System

Earth Observing System

EOS Data and Information System
Flight Operations Segment
Interface Control Document
Internetworking Subsystem
Management Subsystem

Object Modeling Technique
Science Data Processing Segment

AB-1

313-CD-001-002

	1. Introduction
	1.1 Identification
	1.2 Scope
	1.3 Purpose
	1.4 Status and Schedule
	1.5 Document Organization

	2. Related Documentation
	2.1 Parent Documents
	2.2 Applicable Documents
	2.3 Information Documents

	3. Communications Subsystem (CSS) Services
	3.1 CSS Overview
	3.1.1 CSS Context
	Figure 3.1.1-1. CSS Context

	3.1.2 CSS Hardware
	Figure 3.1.2-1. EOC Hardware Connectivity

	3.2 Interprocess Communication (IPC) and Notificat...
	3.2.1 Interprocess Communication/HCL Overview
	3.2.2 Message Passing Overview
	Figure 3.2.2.1.7-1. Message Passing Scenario One E...
	Figure 3.2.2.1.7-2 Message Passing Scenario Two Ev...
	Figure 3.2.2.2.7-1. Message Passing Scenario Event...

	3.2.3 Multicast
	Figure 3.2.3.5-1. Multicast Object Model

	3.3 Directory Naming Service
	3.3.1 Overview
	3.3.2 Context
	3.3.3 Directives and Guidelines
	Figure 3.3.3-1. Naming Service - CDS Entry Structu...

	3.3.4 Sample Application Programmer Interface
	3.3.5 Object Model
	Figure 3.3.5.1-1. Naming Scenario #1
	Figure 3.3.5.1-2. Naming Scenario #2
	Figure 3.3.5.1-3. Naming Scenario #3
	Figure 3.3.5.1-4. Naming Scenario #4

	3.4 Time Service
	3.4.1 Overview
	3.4.2 Context
	3.4.3 Directives and Guidelines
	3.4.4 Sample Application Programmer Interface
	3.4.5 Object Model
	3.4.6 Dynamic Model Scenario
	Figure 3.4.6-1. Time Service Event Trace

	3.5 User Authentication
	3.5.1 User Authentication Description
	3.5.2 User Authentication Context Within FOS
	3.5.3 User Authentication API
	3.5.4 User Authentication Dynamic Model
	3.5.5 User Authentication Requirements

	3.6 Authorization
	3.6.1 Authorization Description
	3.6.2 Authorization Context Within FOS
	3.6.3 Authorization Scenario
	3.6.4 Authorization Dynamic Model
	3.6.5 Authorization Requirements

	3.7 Security Service
	3.7.1 Overview
	3.7.2 Context
	3.7.3 Directives and Guidelines
	3.7.4 Sample Application Program Interface
	3.7.5 Object Model
	3.7.6 Dynamic Model Scenarios
	Figure 3.7.6-1. Security Event Trace #1
	Figure 3.7.6-2. Security Event Trace #2
	Figure 3.7.6.-3. Security Event Trace #3

	3.7.7 Implementation

	4.�MSS Services
	4.1 MSS Services
	4.1.1 MSS Overview
	4.1.2 MSS Context
	Figure 4.1-1. FOS-MSS Context Diagram
	Figure 4.1-2. Management Data Flows

	4.1.2 MSS Hardware
	Figure 4.1-3. EOC Hardware Connectivity

	4.2 Management Service
	4.2.1 Management Service Description
	4.2.2 Management Service Context
	4.2.3 Management Service API
	4.2.4 Management Service Dynamic Model
	Figure 4.2.4.1-1. Get MIB Value Dynamic Model
	Figure 4.2.4.2-1. SNMP Trap Generation Dynamic Mod...

	4.2.5 FOS Event API
	4.2.6 FOS Event Dynamic Model
	Figure 4.2.6-1. DMS Event Processing Object Model

	4.2.7 Management Service Requirements

	4.3 Performance
	4.3.1 Performance Description
	4.3.2 Performance Context Within FOS
	4.3.3 Performance Interface Definition
	4.3.4 Performance Dynamic Model
	4.3.5 Performance Metrics

	4.4 Scheduling
	4.5 Configuration Management
	4.6 Other Services
	4.6.1 Security Management Service
	4.6.2 Accountability Management Service
	4.6.3 Trouble Ticketing Service

	5.�SDPS Services
	5.1 FOS/SDPS Interface Overview
	5.1.1 Overview
	5.1.2 SDPS/FOS Interface Description

	5.2 Data Exchange Framework
	5.2.1 SDPS-FOS Network Interface
	5.2.2 Handshaking Control Messages and File Transf...
	5.2.3 Message Format and Contents Overview

	Appendix A. MSS Managed Hardware Objects
	Appendix B. MSS Managed Application (Software) Obj...

